Jump to content

Unread Forum Topics

Showing all content posted in for the last 365 days.

This stream auto-updates     

  1. Earlier
  2. Gene Changes Key to Successful Pregnancy in Lupus April 29, 2019 Pregnant women with lupus are more likely to suffer complications than those who don’t. Lupus Research Alliance Scientific Advisory Board members Dr. Virginia Pascual, Professor at Weill Cornell Medicine; and Dr. Jane Salmon, Collette Kean Research Professor at Hospital for Special Surgery, and their colleagues asked if testing the blood, of pregnant women with lupus, using advanced technologies could identify, early in pregnancy, lupus patients at high risk for complications. Their new paper in the Journal of Experimental Medicine shows that during uncomplicated pregnancy in both healthy and lupus women some genes that incite the immune system become less active. These changes may make the immune system less aggressive and reduce the odds that it will attack the fetus. However, women with lupus who had pregnancy complications, including preeclampsia, did not show the desirable decrease in these immune signatures. Doctors came up with the term “lupus” because they thought the disease’s skin inflammation looked liked a wolf’s bite. The study “supports the idea that in some cases, pregnancy can ‘tame the wolf.’” Drs. Timothy Niewold and Shilpi Mehta-Lee wrote in a commentary on the paper. They note that the findings may enable doctors to identify patients with lupus who are susceptible to pregnancy complications and need careful monitoring To the immune system, a fetus developing in the womb resembles a foreign invader. Normally during pregnancy, the mother’s immune system develops what researchers call tolerance and avoids attacking the fetus. But when patients with lupus become pregnant, their immune system may be less likely to develop tolerance to the fetus, leading to complications such as preeclampsia, premature birth, and even death of the fetus. In the new study, Dr. Pascual and colleagues compared 92 pregnant women with lupus to 43 pregnant women who didn’t have the disease. The researchers obtained blood samples from the women during and shortly after their pregnancies. To detect the earliest changes associated with pregnancy onset, the scientists also analyzed blood from patients undergoing assisted reproductive technology. The researchers evaluated the patients’ immune system by measuring the activity of different genes that help determine how strongly it responds to potential threats. For a subset of these study participants, the investigators also examined the types of cells that are producing the specific immune responses. Early in pregnancy, the activity of key genes decreased in women who didn’t have lupus, probably increasing their tolerance to the developing baby. The researchers saw similar changes in women with lupus who had successful pregnancies. However, the immune system of women with lupus who went on to develop complications was not turned down. Their immune system might be more likely to attack the fetus or prevent its proper development. This inability to turn down the immune activity appears to be a risk factor for adverse pregnancy outcomes in lupus. Testing for these changes in gene activity might pinpoint patients with lupus who are more likely to develop pregnancy complications and who needs careful monitoring and specific therapeutic intervention to improve the outcome. https://www.lupusresearch.org/gene-changes-key-to-successful-pregnancy-in-lupus/
  3. Discovery may help explain why women get autoimmune diseases far more often than men April 19, 2019 , University of Michigan Stark differences in the presence of autoimmune antibodies and immune factors in the blood (top) and kidneys (bottom) of mice that produced excess VGLL3 (left column) compared with healthy mice (right column). Credit: University of Michigan It's one of the great mysteries of medicine, and one that affects the lives of millions of people: Why do women's immune systems gang up on them far more than men's do, causing nine times more women to develop autoimmune diseases such as lupus? Part of the answer, it turns out, may lie in the skin. New evidence points to a key role for a molecular switch called VGLL3. Three years ago, a team of University of Michigan researchers showed that women have more VGLL3 in their skin cells than men. Now, working in mice, they've discovered that having too much VGLL3 in skin cells pushes the immune system into overdrive, leading to a "self-attacking" autoimmune response. Surprisingly, this response extends beyond the skin, attacking internal organs too. Writing in JCI Insight, the team describes how VGLL3 appears to set off a series of events in skin that trigger the immune system to come running—even when there's nothing to defend against. "VGLL3 appears to regulate immune response genes that have been implicated as important to autoimmune diseases that are more common in women, but that don't appear to be regulated by sex hormones," says Johann Gudjonsson, M.D., Ph.D., who led the research team and is a professor of dermatology at the U-M Medical School. "Now, we have shown that over-expression of VGLL3 in the skin of transgenic mice is by itself sufficient to drive a phenotype that has striking similarities to systemic lupus erythematosus, including skin rash, and kidney injury." Effects of excess VGLL3 Gudjonsson worked with co-first authors Allison Billi, M.D., Ph.D., and Mehrnaz Gharaee-Kermani, Ph.D., and colleagues from several U-M departments, to trace VGLL3's effects. They found that extra VGLL3 in skin cells changed expression levels of a number of genes important to the immune system. Expression of many of the same genes is altered in autoimmune diseases like lupus. The gene expression changes caused by excess VGLL3 wreaked havoc in the mice. Their skin becomes scaly and raw. Immune cells abound, filling the skin and lymph nodes. The mice also produce antibodies against their own tissues, including the same antibodies that can destroy the kidneys of lupus patients. The researchers don't yet know what causes female skin cells to have more VGLL3 to begin with. It may be that over evolutionary time females have developed stronger immune systems to fight off infections—but at the cost of increased risk for autoimmune disease if the body mistakes itself for an invader. The researchers also don't know what triggers might set off extra VGLL3 activity. But they do know that in men with lupus, the same VGLL3 pathway seen in women with lupus is activated. Many of the current therapies for lupus, like steroids, come with unwanted side effects, from increased infection risk to cancer. Finding the key factors downstream of VGLL3 may identify targets for new, and potentially safer, therapies that could benefit patients of both sexes. Lupus, which affects 1.5 million Americans, can cause debilitating symptoms, and current broad-based treatment with steroids can make patients far more vulnerable to infections and cancer. Patients' role in future research Their colleague and senior coauthor Michelle Kahlenberg, M.D., of the U-M Division of Rheumatology, is now recruiting patients with lupus for a study sponsored by U-M's A. Alfred Taubman Medical Research Institute that could provide answers to these questions and more. Billi, a resident in dermatology, notes that when she speaks with patients who come to Michigan Medicine's dermatology clinics for treatment of the skin problems lupus can cause, she has to acknowledge the limits of current treatment. Even so, she says, patients are eager to take part in studies by contributing skin and DNA samples that could lead to new discoveries about their condition. "Many patients are frustrated that they've had to try multiple therapies, and still nothing is working well," she says. "To be able to tell them that we're working on a mouse that has the same disease as them, and that we need their help, brings out their motivation and interest in research. They know that it's a long game, and they're in for it." More information: Allison C. Billi et al, The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity, JCI Insight (2019). DOI: 10.1172/jci.insight.127291 Provided by University of Michigan The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity Allison C. Billi,1 Mehrnaz Gharaee-Kermani,2 Joseph Fullmer,1 Lam C. Tsoi,1,3,4,5 Brett D. Hill,6 Dennis Gruszka,7 Jessica Ludwig,7 Xianying Xing,1 Shannon Estadt,2,8 Sonya J. Wolf,2,8 Syed Monem Rizvi,6 Celine C. Berthier,9 Jeffrey B. Hodgin,10 Maria A. Beamer,1Mrinal K. Sarkar,1 Yun Liang,1 Ranjitha Uppala,1,8 Shuai Shao,1,11 Chang Zeng,1 Paul W. Harms,1,10 Monique E. Verhaegen,1 John J. Voorhees,1 Fei Wen,6 Nicole L. Ward,7 Andrzej A. Dlugosz,1,12 J. Michelle Kahlenberg,2,3 and Johann E. Gudjonsson1,3 First published April 18, 2019 - More info Abstract Autoimmune disease is 4 times more common in women than men. This bias is largely unexplained. Female skin is “autoimmunity prone,” showing upregulation of many proinflammatory genes, even in healthy women. We previously identified VGLL3 as a putative transcription cofactor enriched in female skin. Here, we demonstrate that skin-directed overexpression of murine VGLL3 causes a severe lupus-like rash and systemic autoimmune disease that involves B cell expansion, autoantibody production, immune complex deposition, and end-organ damage. Excess epidermal VGLL3 drives a proinflammatory gene expression program that overlaps with both female skin and cutaneous lupus. This includes increased B cell–activating factor (BAFF), the only current biologic target in systemic lupus erythematosus (SLE); IFN-κ, a key inflammatory mediator in cutaneous lupus; and CXCL13, a biomarker of early-onset SLE and renal involvement. Our results demonstrate that skin-targeted overexpression of the female-biased factor VGLL3 is sufficient to drive cutaneous and systemic autoimmune disease that is strikingly similar to SLE. This work strongly implicates VGLL3 as a pivotal orchestrator of sex-biased autoimmunity. Introduction Autoimmune disease is common, can be deadly, and affects women disproportionately. The prevalence of systemic lupus erythematosus (SLE) is 9 times higher among women than men, and many other autoimmune diseases show similar profound female skewing (1). However, the cause of this female bias remains elusive. Previous work has focused primarily on the influence of sex hormones, yet female bias in autoimmunity is observed even prior to puberty and following menopause (2), indicating alternative mechanisms at play. As most autoimmune diseases remain incurable, investigating the causes of autoimmunity is critical, and the drivers of female-biased autoimmunity are logical targets. We previously identified the conserved putative transcription cofactor vestigial like family member 3 (VGLL3) as a candidate female-biased immune regulator (3). VGLL3 is more abundant in the epidermis of women than men and shows female-specific nuclear localization, suggesting a role in sex-biased transcriptional regulation. In cell culture, VGLL3 knockdown decreased expression of select female-biased immune transcripts, including B cell–activating factor (BAFF, also known as TNFSF13B), the target of the only currently approved biologic therapy for SLE. Intriguingly, men who have SLE showed loss of sex-specific regulation of VGLL3, demonstrating upregulation and nuclear localization of VGLL3 in inflamed skin (3). This suggested that VGLL3 may govern a key upstream regulatory program promoting autoimmunity, but this hypothesis had yet to be explored. Results Human and murine VGLL3 share 87% sequence homology, including an identical putative transcription cofactor domain (Supplemental Figure 1A; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.127291DS1). Similar to human women, female mice showed 2.8-fold higher Vgll3 expression than male mice in the skin (P = 0.053) (Supplemental Figure 1B), suggesting conserved sex-biased dynamics. To test for a causative role for cutaneous VGLL3 in promoting autoimmune disease, we generated transgenic mice overexpressing Vgll3 under the control of the bovine keratin 5 (K5) promoter (Figure 1A), which drives gene expression primarily in the epidermis but also in some other stratified squamous epithelia (4). Levels of Vgll3, as shown by quantitative reverse transcription PCR (qRT-PCR), in transgenic skin varied both across and within founder lines, with transgenic mice generally showing 5- to 50-fold expression relative to WT mice, and no consistent variation by sex (data not shown). Compared with WT mice, these K5-Vgll3–transgenic mice showed increased epidermal VGLL3 staining, with conspicuous nuclear localization (Figure 1B) analogous to human VGLL3 distribution in affected skin of patients with SLE (3). Transgenic pups were indistinguishable from WT pups at birth. Within 6–12 weeks of life, they began developing progressive skin thickening and scaling prominently involving the face and ears, common sites for human discoid lupus erythematosus (DLE) lesions (Figure 1C and Supplemental Figure 1C). No consistent skin phenotypic variation by sex was noted among transgenic littermates (data not shown). Figure 1 Overexpression of VGLL3 in the epidermis produces a skin phenotype with gross and histologic features of cutaneous lupus. (A) Transgenic (TG) cassette. The bovine keratin 5 (K5) promoter drives polycistronic expression of the full-length mouse VGLL3 and mCherry red fluorescent protein linked by an internal ribosome entry site (IRES). β-glob, rabbit β-globin intronic sequence; pA, polyadenylation signal. (B) Detection of VGLL3 protein (red) by immunofluorescence (IF) in skin of female WT and TG mice. Scale bar: 20 μm. Images are representative of sections from 3 WT and 3 TG animals examined. (C) Left: WT mouse compared with age-matched TG mouse with lupus-like skin rash. Right: Bright-field and fluorescence images of WT and lesional TG tail skin. Scale bar: 2 mm. (D) H&E staining of WT and TG volar skin sections, demonstrating epidermal hyperplasia, basal cell vacuolization, apoptotic keratinocytes (arrowhead, magnified on inset), and dermal inflammatory infiltrate. Scale bar: 20 μm. (E) TUNEL (red) staining of WT and TG tail skin sections. Scale bar: 50 μm. (F) Periodic acid–Schiff staining of WT and TG dorsal skin sections. Arrowheads indicate subtle basement membrane thickening. Scale bar: 20 μm. (G) Detection of IgG and complement factor C3 by IF in WT and TG nonlesional neck skin. Scale bar: 50 μm. In E–G, images are representative of sections from 3 WT and 3 TG animals examined. Histologically, early skin lesions showed epidermal thickening and focal interface dermatitis, an inflammatory reaction pattern seen in cutaneous lupus (Figure 1D and Supplemental Figure 1, D and E). TUNEL staining confirmed increased keratinocyte apoptosis (Figure 1E), subtle basement membrane thickening was evident on periodic acid–Schiff (PAS) staining (Figure 1F), and direct immunofluorescence (IF) revealed IgG and C3 deposition at the dermal-epidermal junction (Figure 1G all are characteristic features of cutaneous lupus in humans. To examine the effects of VGLL3 that were driving this lupus-like cutaneous phenotype, we evaluated WT mice and robustly expressing transgenic mice by qRT-PCR for transcript levels of a panel of proinflammatory and lupus-related factors. Many of these transcripts showed significant elevation in transgenic mice (Figure 2A and Supplemental Figure 2A), including Tnfsf13b (encoding BAFF); IFN-κ (Ifnk), the predominant type I IFN in cutaneous lupus (5); and Cxcl13, a biomarker of early-onset SLE, heightened disease activity, and renal involvement (6). IF studies of key VGLL3-regulated factors (Figure 2B) corroborated our qRT-PCR findings. Thus, epidermal VGLL3 overexpression drives immunological gene dysregulation, similar to what we previously observed in the skin of healthy women (3). Figure 2 Overexpression of VGLL3 in the epidermis recapitulates the autoimmunity-prone genetic signature of human female skin. (A) Detection of Vgll3 and enriched immune transcripts versus example nonenriched transcript Ifnb (IFN-β) by quantitative reverse transcription PCR (qRT-PCR) in skin of WT (n = 3) and TG mice (n = 2) with high Vgll3 expression (more than tenfold WT average). Horizontal bars represent the mean. *P < 0.05 by 2-tailed Student’s t test. (B) Detection of VGLL3 targets CXCL13 (top, red) and IFN-κ (bottom, green) by IF in WT and TG skin. Blue, DNA. Scale bar: 20 μm. Images are representative of sections from 3 WT and 3 TG animals examined. (C) Literature-based network analysis of genes differentially expressed in nonlesional, normal-appearing TG skin relative to WT skin by RNA-seq. (D) Expression in nonlesional TG versus WT skin of genes dysregulated (dysreg) in discoid lupus erythematosus (DLE; P = 4.0 × 10–10) or subacute cutaneous lupus erythematosus (SCLE; P = 2.3 × 10–8) versus all genes. x axis, log2 fold change (FC) in TG versus WT. See Methods for additional statistical details. For a broader examination of VGLL3 effects, we performed RNA-seq of normal-appearing dorsal skin from WT and transgenic mice to identify differentially expressed genes (transgenic DEGs) (Supplemental Table 1). Results largely affirmed our qRT-PCR data (Supplemental Figure 2B) and revealed that the panel of transcripts examined in Supplemental Figure 2B represent only a fraction of the VGLL3-regulated transcripts identified in transgenic mice. Of the 120 gene ontology terms significantly enriched (FDR ≤ 10%) among transgenic DEGs, nearly half were related to immunological processes (Supplemental Figure 2C). Importantly, these included multiple key pathways involved in SLE pathogenesis, such as IFN responses. Literature-based network analysis of transgenic DEGs revealed additional nodes of autoimmune pathogenesis (Figure 2C). To further explore our hypothesis that female-biased VGLL3 expression in human skin drives gene changes that may predispose women to autoimmunity, we compared transgenic DEGs with the set of genes upregulated in healthy human female skin relative to male skin (3) and found a significant overlap (P = 0.032). To evaluate for a direct effect of VGLL3 overexpression in keratinocytes of our mouse model, we cultured primary keratinocytes from WT and transgenic mouse tails and performed RNA-seq. Genes differentially expressed in transgenic keratinocytes also demonstrated enrichment for immunological gene ontology terms, such as immune response (P = 6.8 × 10–9) and cytokine activity (P = 1.2 × 10–8), and showed even more significant overlap with female-biased genes (P = 4.0 × 10–7). Thus, epidermal overexpression of VGLL3 is a prominent driver of immunological dysregulation and sex-biased gene expression in keratinocytes. We then compared our mouse skin RNA-seq results to transcriptomic data from skin of cutaneous lupus patients (7). Genes dysregulated in lesional skin of patients with DLE or subacute cutaneous lupus erythematosus (SCLE) were overrepresented among transgenic DEGs (DLE, P = 1.1 × 10–13; SCLE, P = 5.0 × 10–9) and showed widespread upregulation in transgenic mice (Figure 2D), revealing a shared pattern of gene dysregulation in skin of K5-Vgll3–transgenic mice and lupus patients. Together, these in vivo data demonstrate that VGLL3 overexpression in the epidermis is sufficient to drive a female-biased gene expression signature with dysregulation of pathways implicated in human autoimmune disease. Immunohistochemistry of K5-Vgll3–transgenic skin revealed a mixed inflammatory infiltrate (Figure 3). T and B cells were increased, as were DCs, which promote lymphocyte expansion, autoantibody production by B cells, and tissue damage in SLE (8). Flow cytometry of cells isolated from skin corroborated these findings, demonstrating increased plasmacytoid DCs, as well as IgM+ and IgG+ cells, consistent with B cell expansion (Supplemental Figure 3). Neutrophils were also elevated, consistent with the neutrophilic inflammation noted on some lesional sections (Supplemental Figure 1F) and observed in a significant subset of cutaneous lupus manifestations (9). These results illustrate that epidermal overexpression of VGLL3 results in a cutaneous phenotype with gross, histologic, and inflammatory features of cutaneous lupus. Figure 3 Overexpression of VGLL3 in the epidermis causes skin inflammation with features of cutaneous lupus. Detection of the indicated cell markers by immunohistochemistry in WT and TG ear sections. Ki67, cell proliferation marker; MECA, mouse endothelial cell antigen. Scale bar: 50 μm. Images are representative of sections from 4 WT and 4 TG animals examined. To further interrogate the inflammatory response in the K5-Vgll3–transgenic mouse, we analyzed skin-draining lymph nodes, spleen, and ear tissue from WT and transgenic mice with mass cytometry (CyTOF) using a 37-marker panel (Supplemental Figure 4 and Supplemental Table 2). Transgenic mice showed significant lymphadenopathy and splenomegaly (Figure 4A), features common in SLE and some lupus mouse models (10, 11). CyTOF data visualized using the dimensional reduction tool viSNE (12) showed expansion of B cell populations that were most prominent in skin-draining lymph nodes (Figure 4B and Supplemental Figure 4). Key populations emerging from CyTOF are highlighted in a SPADE tree (13) (Figure 4, C–E, and Supplemental Figure 5). B cells were significantly overrepresented in transgenic lymph nodes (q = 6.2 × 10–4; blue circles in Figure 4D) and spleen (q = 0.024). Together, these findings suggest that skin-directed VGLL3 overexpression drives a systemic inflammatory response with B cell expansion. Figure 4 Skin-directed VGLL3 overexpression drives a systemic inflammatory response with B cell expansion. (A) Left: Representative images of WT and TG skin-draining lymph nodes (LN) and spleens. Right: LN and spleen weights represented as a percentage of total body weight. Error bars represent mean ± SEM. **P < 0.01 by 2‑tailed Student’s t test (LN, n = 6 WT and 3 TG; spleen, n = 8 WT and 8 TG). (B) CyTOF data derived from a single experiment consisting of 3 age- and sex-matched WT and TG mice visualized by viSNE. Left: viSNE maps depicting expression of select markers. Each dot is a cell. Color reflects the level of expression of marker from low (blue) to high (red). Right: Contour plot of viSNE maps colored by density of cells isolated from the specified tissues in WT and TG mice. Here, color reflects cell density from low (blue) to high (red). Data shown correspond to 1 WT and 1 TG mouse that are representative of the experiment. LN and spleen data represent approximately 20,000 CD45+ live singlets per sample. Ear skin samples represent all recorded CD45+ live singlets (WT, 262 and TG, 264) for each sample. The complete viSNE analysis for all markers and samples for the experiment can be found in Supplemental Figure 4. Data are representative of 2 independent CyTOF experiments. (C) SPADE tree of LN samples depicted in B. Node size represents the number of cells in the population derived from the experiment represented in B and Supplemental Figure 4B. Mϕ, macrophage; Neut, neutrophil; Tγδ, γ δ T cell. (D) Percentage dot plot showing the proportion of each cell type in aggregated WT and TG lymph node samples for the CyTOF experiment. Colors correspond to the populations indicated in C and E. (E) Heatmap showing marker expression of the SPADE populations specified in Cacross aggregated LN, spleen, and skin samples included in the CyTOF experiment. Q val, q values for differential detection in WT versus TG LN. †q = 6.2 × 10–4, significantly upregulated in TG LN. Peripheral blood mononuclear cells (PBMCs) of patients with SLE show altered gene expression, with prominent dysregulation of genes in IFN and cytokine signaling pathways that likely contributes to systemic inflammation (14). Evaluating gene expression in blood of WT versus K5-Vgll3–transgenic mice, we observed a significantly higher effect size for genes whose human orthologs are dysregulated in blood of SLE patients (P = 1.6 × 10–22) (Figure 5A and Supplemental Table 3), indicating a shared pattern of gene dysregulation in circulating immune cells of K5-Vgll3–transgenic mice and patients with SLE. Figure 5 Mice with skin-directed VGLL3 overexpression develop manifestations of systemic autoimmune disease. (A) Differential expression in WT (n = 4) and TG (n = 4) mouse blood of genes dysregulated in SLE peripheral blood mononuclear cells (aqua) versus all genes (peach). (B) Detection at 1:50 dilution of circulating antinuclear antibodies (Ig) by indirect IF in HEp-2 cells in WT, TG, and positive control (+ control, aged NZM2328) serum. In total, 7 TG and 3 WT animals were evaluated; all TG mouse sera showed positive autoantibody staining at a dilution of 1:25 or higher, whereas all WT mouse sera were negative. (C) Detection of circulating anti–double-stranded DNA antibodies (α-dsDNA) by ELISA. Error bars represent mean ± SEM. ***P = 0.0005 by 2-tailed Student’s t test. n = 6 WT and 6 TG. (D) Detection of IgG (red) and complement factor C3 (green) by IF in WT and TG glomeruli. Blue, DNA. Scale bar: 20 μm. Images are representative of glomeruli visualized on sections from 6 WT and 6 TG animals examined. 0 of 6 WT and 6 of 6 transgenic mice scored positive for renal immune complex deposition. Finally, we investigated whether the B cell expansion of the K5-Vgll3 mouse was associated with autoantibody production. Autoantibodies are integral to pathogenesis of SLE and associated with increased risk of progression from cutaneous to systemic lupus (15). Commonly used SLE classification systems include their detection as a diagnostic criterion. By indirect IF of HEp-2 cells, antinuclear antibodies were detected in sera of transgenic mice with developed phenotypes (Figure 5B). A homogeneous pattern of nuclear staining was observed, which is commonly found in SLE patients. Anti–double-stranded DNA (anti-dsDNA) antibodies, which are a specific marker for SLE and fluctuate with disease activity (16), were abundant in sera of transgenic mice (Figure 5C). As anti-dsDNA antibodies are pathogenic to the kidney (17), we examined kidneys of transgenic mice and found IgG and C3 deposition in glomeruli (Figure 5D). Most transgenic mice were harvested by 4–5 months of age due to the severity of the skin phenotype, limiting time for evolution of fulminant nephritis; nonetheless, examination of the transgenic kidneys revealed a subtle trend toward increased inflammation relative to WT kidneys (P = 0.20; Supplemental Figure 6, A and B). As expected based on the mild histology, significant proteinuria was not detected (P = 0.19; Supplemental Figure 6C). Thus, skin-directed VGLL3 overexpression stimulates development of lupus-specific anti-dsDNA autoantibodies that results in immune complex deposition in the kidney, the purported initiating event in development of lupus nephritis (17). Discussion Female sex alone carries a greater risk for developing SLE than any genetic or environmental factor identified to date (18). Previously, we determined that women express an autoimmunity-prone genetic signature in their skin. We hypothesized that this program was driven by the putative transcription cofactor VGLL3, which is upregulated and nuclear localized in the skin of healthy women and SLE patients of both sexes (3). Here, we establish that skin-directed overexpression of murine VGLL3 is sufficient to drive an autoimmunity-prone transcriptional signature similar to that observed in female skin, causing inflammation and activation of type I IFN signaling that mimics cutaneous lupus. Intriguingly, although VGLL3 overexpression in our model was restricted by the bovine K5 promoter to keratinocytes and some other squamous epithelia (4), K5-Vgll3–transgenic mice developed systemic inflammation, with B cell activation and autoantibody production that culminated in renal immune complex deposition analogous to that seen in lupus nephritis. Thus, overexpression of a single female-biased gene is sufficient to trigger cutaneous autoimmune disease accompanied by a systemic autoimmune response with striking similarities to SLE. This includes development of anti-dsDNA antibodies, whose presence constitutes an independent risk factor for lupus nephritis (19), and detection of immune complexes in the skin and kidneys. A growing body of evidence suggests that, in autoimmune disease pathogenesis, the initial break in self-tolerance — the inciting “first hit” — occurs at epithelial surfaces. In rheumatoid arthritis, localized mucosal tissue damage may lead to posttranslational modification of peptides, resulting in formation of anti-citrullinated peptide antibodies (20), autoantibodies that often precede the onset of disease and in susceptible individuals may incite it (21). In antinuclear antibody–associated diseases, such as SLE and other connective tissue diseases, the first hit may occur in the skin. In patients with SLE, clearance of apoptotic cells is impaired (22). Insults, such as ultraviolet light, which induces immunological activation and apoptosis of keratinocytes, cause release of endogenous nuclear antigens. Presence of these autoantigens results in elaboration of cytokines and immune cell recruitment, and cytotoxic inflammation perpetuates their release, with resulting accumulation and possible entry into circulation as proinflammatory microparticles. Inflammation in the skin may therefore prime or exacerbate antinuclear antigen-focused autoimmunity. There are sparse data suggesting that treatment of cutaneous lupus may prevent progression to SLE (23). The results herein demonstrate that cutaneous disease may be sufficient to trigger a break in self-tolerance with evolution of systemic autoimmune disease. These findings are complemented by reports in mice describing evolution of SLE-like disease with development of anti-dsDNA antibodies and immune complex nephritis in response to epidermal IFN-γ overexpression (24, 25). Further study of the IFN-γ epidermal overexpression and K5-Vgll3 lupus mouse models may reveal that treatment of cutaneous lupus is sufficient to ameliorate or even prevent progression to systemic disease. If so, this could prompt a paradigm shift in our understanding of the pathogenesis of SLE. Our results do not distinguish a principal pathway promoting autoimmunity in the K5-Vgll3–transgenic mouse. As the VGLL3-regulated factor IFN-κ is the predominant type I IFN in cutaneous lupus (5), this presents a parsimonious explanation; however, VGLL3 alters the expression of genes that act in multiple independent inflammatory pathways, and the lupus-like phenotype of the K5-Vgll3–transgenic mouse may represent the cumulative manifestation of widespread immunological VGLL3-induced dysregulation. This is reflected in the diverse inflammatory pathways activated in the skin of transgenic mice (Figure 2C), many of which have key roles in autoimmunity: MHC class I, antigen binding, cytokine activation, humoral immune responses, cellular response to IFN, and regulation of T cell–mediated cytotoxicity (26). The significant overlap of VGLL3 targets with genes dysregulated in female skin suggests that the transgenic mouse phenotype represents a fully developed autoimmune disease of which female-biased autoimmunity is the forme fruste. Additional studies of the component inflammatory pathways in the K5-Vgll3 lupus model are required to dissect the pathogenesis further. Finally, one of the principal challenges of treating lupus is disease heterogeneity. Broad immunosuppressants address disease in a majority of patients but carry serious risks of infection and malignancy that contribute substantially to morbidity and mortality. In contrast, narrower agents, such as belimumab, the biologic therapy that targets BAFF, are effective only in a subset of patients where presumably the disease is driven more heavily by the targeted autoimmune pathway. As VGLL3 appears to be not only constitutively active in women but also turned on in men with SLE (3), targeting VGLL3 may prove beneficial in patients of both sexes. Additionally, the low levels of VGLL3 in healthy men suggest that it may be amenable to depletion without adverse effects. Given stimulation of diverse inflammatory pathways — including those involving type I IFN and BAFF — observed in the K5-Vgll3–transgenic mouse, VGLL3 depletion may successfully treat more subgroups within this heterogeneous patient population. In conclusion, our data support the assertion that enrichment of VGLL3 in female skin primes women for autoimmunity. This positions VGLL3 as a master orchestrator of sex bias in autoimmune disease, providing potentially novel avenues for future research and therapeutic development. Methods Mice, primary keratinocyte isolation, and culture The K5-Vgll3-IRES-tdTomato–transgenic (K5-Vgll3–transgenic) cassette was generated as follows. The Vgll3-IRES-mCherry insert was synthesized de novo by GenScript and subcloned into the pBK5 vector, in which the bovine K5 promoter drives expression primarily in epidermis but also in some other stratified squamous epithelia (4). Of note, expression of this specific promoter has been reported to be absent in thymus and spleen (4, 27), indicating no significant expression in the immune cells therein. The Vgll3 coding sequence was taken from NCBI reference sequence NM_028572.1. The mCherry coding sequence was taken from GenBank (accession AY678264, nt 1–711) (28). Following sequence verification, the transgenic cassette was isolated by restriction enzyme digest, purified, and injected into C57BL/6 mouse oocytes at the University of Michigan Transgenic Core. Founders were identified by PCR using the following PCR primers: forward, 5′-ATCGTGCCAAGTGTGGGCTTCGATACA-3′ (located in the Vgll3 coding sequence), reverse, 5′-CACATTGCCAAAAGACGGCAATATGG-3′ (located in the IRES) and were crossed with C57BL/6J breeders (The Jackson Laboratory) to establish transgenic lines. Transgene-positive offspring were screened for cutaneous phenotypes. Nine independent founder lines were generated that demonstrated spontaneous development of cutaneous phenotypes; progeny of 6 additional independent founders either failed to develop phenotypes or were harvested for experimental purposes prior to development of phenotypes. Phenotypes observed were overall fairly uniform and typically involved alopecia and ulceration that progressed with age, often necessitating euthanasia; transgenic animals from 6 independent founder lines are pictured at time of euthanasia in Supplemental Figure 1C. Transgenic mice were observed scratching and excessively barbering, and some transgenic animals were noted to be excessively barbering nontransgenic littermates. K5-Vgll3–transgenic mouse skin harvested from multiple sites was evaluated by fluorescent microscopy of transgenic mCherry to verify epidermal transgene expression (tail, Figure 1C). For RNA-seq analysis of nonlesional (posterior dorsal) skin and blood, 4 transgenic animals representing 3 independent founder lines were included (see below for associated methods). For RNA-seq analysis of transgenic and WT primary keratinocytes, all animals were from a single litter representing 1 founder line to enable simultaneous isolation, culture, and harvest. RNA‑seq analysis of transgenic nonlesional skin and primary keratinocytes confirmed significant Vgll3 mRNA overexpression relative to WT skin and primary keratinocytes, respectively. qRT-PCR also confirmed significant Vgll3 mRNA overexpression, although the variation and upper limit of Vgll3overexpression was greater (generally 5- to 50-fold), possibly due to increase in epidermal thickness. Consistent with prior reports of absent expression in lymphoreticular organs (4, 27), RNA-seq analysis of K5-Vgll3–transgenic blood showed no Vgll3 upregulation that would be suggestive of leakage of transgene expression in immune cells (data not shown). Given the overall similarity in phenotype and gene expression changes noted by RNA-seq analysis of nonlesional skin of 3 different founder lines, multiple founder lines were included throughout the manuscript, including in qRT-PCR analyses. Primary keratinocytes were isolated as previously described from tails of 3 WT and 3 transgenic 23-day-old weanlings from a single litter (29) with the following change: skin was incubated for 1.5 hours at 37°C rather than overnight at 4°C. Cells were expanded in culture for 3 days and harvested for RNA using Buffer RLT (Qiagen) per the manufacturer’s protocol. Tissue collection For harvest of tissues for generating RNA and frozen or paraffin sectioning, transgenic mice and WT controls were euthanized at 8 weeks of age or older. Whole blood was obtained by cardiac stick and RNA was isolated using the Mouse RiboPure-Blood RNA Isolation Kit (Thermo Fisher Scientific) or TriPure Isolation Reagent (MilliporeSigma) per the manufacturer’s protocols. Nonlesional posterior dorsal skin was removed by punch biopsy. Ears were removed in entirety. Skin from the indicated sites was otherwise harvested and processed as previously described (30). For harvest of tissues for mass cytometry (CyTOF) and flow cytometry, sex-matched transgenic and WT littermates were sacrificed at 8 weeks of age or older. Ears, spleen, and skin-draining (cervical and inguinal) lymph nodes were removed in entirety. The ear and dorsal skin samples were minced with a sterile razor and transferred to 18 ml RPMI (Gibco) containing 10% fetal calf serum (Atlanta Biologicals) and 1% Penicillin-Streptomycin (Gibco) (hereafter, RPMI complete media). To each sample, 2 ml of a skin digestion solution consisting of Hanks’ Balanced Salt Solution (Gibco) with 1 mg/ml DNAse I (MilliporeSigma), 1 mg/ml Hyaluronidase type V (MilliporeSigma), and 5 mg/ml Collagenase type IV (MilliporeSigma) was added. Samples were rotated for 2 hours at 37°C to digest. Following digestion, samples were filtered through a 40-μm cell strainer, washed with fresh RPMI complete media, and incubated on ice. Spleens and lymph nodes (4 lymph nodes combined for each animal) were weighed before being ground through a 70-μm cell strainer and suspended in RPMI complete media. For spleen samples, media were removed, and cells were incubated in RBC lysis buffer (Invitrogen) for 2 minutes. Lysis buffer was removed, and spleen samples were resuspended in fresh RPMI complete media. qRT-PCR RNA was converted to cDNA using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). qRT-PCR was performed in technical duplicates for the biological replicate numbers indicated in the figure legends using TaqMan Universal PCR Master Mix (Applied Biosystems). TaqMan primer sets and probes were purchased from Applied Biosystems by Life Technologies and are listed in Supplemental Table 4. All values were normalized to the housekeeping gene 18S. All qRT-PCR data are presented with y axis log2-scaled and autolog numbered. RNA-seq and gene expression analyses Stranded mRNA libraries were prepared from nonlesional (posterior dorsal) skin, cultured keratinocytes, and whole blood from age- and sex-matched WT and transgenic mice (2 male and 2 female each) using the TruSeq RNA library prep kit (Illumina) and sequenced on the Illumina HiSeq 4000 sequencer at the University of Michigan DNA Sequencing Core. Data were quality controlled and analyzed using the pipeline described previously for RNA-seq analysis, including adapter trimming (31), read mapping, and quantification of gene expression (32). We used the GENCODE release m18 (GRCm38) from mouse. We filtered for average abundance of ≥1 read per gene across all samples. DESeq was used for expression normalization. Generalized linear regression was used for differential expression analysis using negative binomial distribution to model the count data (33). FDR was used to control the multiple testing. DEGs were defined as having FDR ≤ 10% and with |log2fold change| ≥ 1 (Supplemental Tables 1 and 3). For Supplemental Figure 2B, data are presented with y axis after log2 scaling and autologing of numbers for ease of comparison to qPCR data. Software‑extracted literature‑based network analysis was performed using Genomatix Pathway System Software. For identification of genes dysregulated in DLE and SCLE, microarray data from 26 DLE and 23 SCLE lesional skin biopsies and 7 normal skin biopsies (GEO GSE81071) were utilized to identify genes that are differentially expressed in DLE and SCLE skin (termed dysregulated in text to avoid confusion with transgenic DEGs) at the FDR ≤ 10% and with |log2fold change| ≥ 1 threshold. For identification of genes dysregulated in blood of SLE patients, RNA-seq data from whole blood of 99 SLE and 18 healthy control patients were analyzed as above and used to identify genes that were differentially expressed in blood of SLE patients (termed dysregulated in text to avoid confusion with transgenic DEGs). We performed analysis only for genes expressed in at least 20% of the normal samples. For investigation of target overlap with DLE and SCLE skin and SLE blood, only genes with identical names in mouse and human were included. Histology and immunostaining Hematoxylin (Surgipath, 3801540) and eosin (Surgipath, 3801600) staining was performed per standard protocols. Epidermal thickness was quantified on the H&E-stained sections using Adobe Photoshop. For each animal, approximately 100 measurements were taken from 8 different fields of view for each section analyzed. Epidermal thickness was measured from the stratum basale to stratum granulosum, excluding the stratum corneum and hair follicles for each animal. IF to detect VGLL3 and target proteins was performed as follows. For CXCL13 detection, formalin-fixed, paraffin-embedded tissue sections were deparaffinized, rehydrated, and heated at 95°C for 20 minutes in pH 6 antigen retrieval buffer. Slides were blocked and incubated with goat anti-mouse CXCL13 antibody (R&D System, AF470-SP) overnight at 4°C. For VGLL3 and IFN-κ detection, cryosections were subjected to acetone fixation. Slides were blocked and incubated with rabbit anti-mouse VGLL3 antibody (St. John’s Laboratory, STJ115228) or sheep anti-mouse IFN-κ antibody (R&D System, AF5206), respectively. All slides were then incubated with biotinylated secondary antibodies (Vector Laboratories) as appropriate, incubated with fluorochrome-conjugated streptavidin (Streptavidin, Alexa Fluor 488 conjugate [Thermo Fisher Scientific, S32354] or Streptavidin, Alexa Fluor 594 conjugate [Life Technologies, S32356]) as appropriate and mounted. Images were acquired using Zeiss Axioskop 2 microscope and analyzed by SPOT software V.5.1. PAS staining of paraffin sections was performed using the Periodic acid–Schiff (PAS) staining system (MilliporeSigma) per the manufacturer’s instructions (see procedure 395). TUNEL staining of paraffin sections was performed using the In Situ Cell Death Detection Kit, TMR red (Roche). Slides were mounted with ProLong Gold Antifade Mountant with DAPI (Thermo Fisher Scientific). IF of immune complex components was performed as follows. Slides with tissue cryosections were dried for 1 hour at 37°C, incubated in 4% paraformaldehyde for 20 minutes, and blocked. C3-FITC (ICL, GC3-90F-Z) and IgG-Texas Red-X (Thermo Fisher Scientific, T-862) goat anti-mouse antibodies were then added, and slides were incubated at 4°C for 1 hour. Hoechst stain (BD Biosciences, 561906) was added. Slides were dried and mounted using ProLong Gold Antifade Mountant (Thermo Fisher Scientific). Images were captured as above. For renal immune complex deposition, 10 glomeruli were assessed for each mouse, and mice were considered positive if more than one glomerulus demonstrated deposition of C3 and IgG. Immunohistochemistry of frozen sections was performed as previously described (30) using antibodies specific for CD4 (BD Biosciences, 550280), CD8a (BD Biosciences, 550281), CD11c (BD Biosciences, 550283), CD19 (BD Biosciences, 550284), F4/80 (eBioscience, 14-4801-82), Ki-67 (DAKO, M7249), and MECA-32 (Developmental Studies Hybridoma Bank, MECA-32-s). Antibodies were detected using either rabbit anti-rat IgG biotinylated (Vector Laboratories), goat anti-rabbit IgG biotinylated (Vector Laboratories), or rabbit anti-hamster IgG biotinylated (Southern Biotech) secondary antibodies, amplified with Avidin/Biotinylated Enzyme Complex (Vector Laboratories), and visualized using the enzyme substrate diaminobenzidine (Vector Laboratories). Slides were counterstained with hematoxylin. Images were captured using a Leica DM L82 microscope with an attached QImaging MicroPublisher 3.3 Mega Pixel camera and Q-capture Pro software. For detection of antinuclear antibodies, serum was taken undiluted, diluted 1:25, or diluted 1:50 and used for indirect IF on Kallestad HEp-2 Slides (Bio-Rad) with FITC goat anti-mouse Ig antibody (BD Biosciences) as the detection reagent. Imaging was performed as for IF above. Mass cytometry (CyTOF) Stimulation. Tissue was harvested and cell suspensions were prepared as above. All samples were then stimulated for 3 hours at 37°C in RPMI complete media with 5 ng/ml phorbol 12-myristate 13-acetate (MilliporeSigma), 1 μg/ml ionomycin (MilliporeSigma), 3 μg/ml Golgistop with Brefeldin A (BioLegend), and 0.67 μl/ml BD GolgiStop Protein Transport Inhibitor with Monensin (Thermo Fisher Scientific), and then incubated on ice until staining. Antibody conjugation with lanthanide metal. The lanthanide metals (Fluidigm) were conjugated to the antibodies using the Maxpar Antibody Labeling Kit (Fluidigm) per the manufacturer’s instructions. Briefly, 2.5 mM Maxpar polymer was preloaded with lanthanide metal at 37°C for 1 hour and buffer exchanged to conjugation buffer using a 3 K Nanosep Centrifugal Device (Pall Life Sciences). The antibody was partially reduced using TCEP at 37°C for 30 minutes and buffer exchanged to conjugation buffer using an Amicon Ultra 0.5-ml 50-kDa Centrifugal Filter Concentrator (MilliporeSigma). The lanthanide-loaded polymer was conjugated to partially reduced antibody following overnight incubation at room temperature. The unbound metal was removed from the metal-tagged antibody by washing with wash buffer in a 50-kDa concentrator. The final concentration of metal-tagged antibody was determined by measuring the absorbance at 280 nm against the wash buffer. See Supplemental Table 2 for the antibodies. Staining of cells with metal-tagged antibodies. Cell-ID Cisplatin-195Pt and Cell-ID Intercalator Iridium-191/193 (Fluidigm) were used to identify live cells. The cells were washed once with prewarmed serum-free media by pelleting at 300 g for 5 minutes at room temperature and stained with 1.25 μM live/dead stain (Cell-ID Cisplatin-195Pt diluted in serum-free media from 500 mM stock) at room temperature for 5 minutes. Free cisplatin was quenched by washing the cells with serum-containing media. CyPBS (1× PBS without heavy metal contaminants, prepared from 10 × PBS stock [Invitrogen] in deionized distilled Milli-Q water [MilliporeSigma]) was used to prepare CyFACS buffer (CyPBS containing 0.1% BSA, 2 mM EDTA and 0.05% sodium azide). The cells were then washed with CyFACS buffer and incubated with TruStain FcX (anti-mouse CD16/32, Biolegends) for 10 minutes at room temperature to block the Fc receptors. For cells surface marker staining, the metal-tagged antibody cocktail was made in CyFACS buffer and added to the cells in the presence of TruStain FcX (BioLegend) and incubated on ice for 60 minutes. Following cell surface marker staining, the cells were washed twice with CyFACS buffer and fixed with 1.6% paraformaldehyde in CyPBS for 20 minutes at room temperature. The cells were then washed and stored overnight at 4°C in CyFACS buffer. The following day, the cells were pelleted at 800 g for 5 minutes and permeabilized with eBioscience permeabilization buffer (Thermo Fisher Scientific) for 30 minutes at room temperature. The cells were then stained with intracellular staining metal-tagged antibody cocktail (made in eBioscience permeabilization buffer) at room temperature for 60 minutes. Following intracellular staining, the cells were washed once with permeabilization buffer and twice with CyFACS buffer and stained with 62.5 nM Cell-ID Intercalator Iridium-191/193 (diluted in 1.6% paraformaldehyde in PBS from 500 μM stock) at room temperature for 40 minutes or left at 4°C until ready for acquisition on CyTOF. CyTOF analysis of samples stained with metal-tagged antibodies. The samples were acquired using CyTOF Helios system (Fluidigm). The system was maintained and tuned according to the manufacturer’s instructions. In addition, internal vendor-set calibration was performed before acquiring samples. The fixed cells were washed twice with CyPBS and deionized distilled Milli-Q water and filtered through a 40-μM cell strainer. EQ Four Element Calibration Beads (Fluidigm) were added at the recommended concentration to the samples before acquisition on CyTOF. The samples were acquired on CyTOF at approximately 50–300 events/s. After acquisition, the instrument software applied a signal correction algorithm based on the calibration bead signal to correct for any temporal variation in detector sensitivity. CyTOF data analysis Total events were gated to remove noncellular events (negative for DNA intercalator), dead cells (uptake of cisplatin), and doublets (event length greater than 25). A viSNE was performed using combined lymph node (~20,000 events/sample), spleen (~20,000 events/sample), and ear (between 262 and 1234 events/sample) samples using Cytobank (34). All antibody channels were included in the viSNE analysis except for IL-17f, as it was suspected this marker was staining nonspecifically (37 included markers). The viSNE run was performed with 2000 iterations, a perplexity of 30, and a θ of 0.5. A spanning-tree progression analysis of density-normalized events (SPADE) clustering algorithm was performed on the same events used in the viSNE analysis using the Cytobank platform (13). As with the viSNE analysis, all antibody channels were included except for IL-17f, as we suspected this marker was staining nonspecifically (37 included markers). After some experimentation, it was found that 50 nodes with 100% event downsampling gave an adequate resolution of cellular subsets. SPADE nodes were manually bubbled based on defined phenotypic markers of major cellular populations (summarized in Figure 4E). Samples were compared based on the percentage of total cells from that sample contained within a bubble or individual node. Flow cytometry WT and transgenic ear tissue was harvested and cell suspensions were prepared as above. Cells were resuspended in blocking reagent of 1% BSA (Fisher Bioreagents) and 1% Horse Serum (Corning) in PBS. Antibody master mixes were prepared using antibodies specific for IgG-PerCP (BioLegend, 405334), IgM-APC (BioLegend, 406509), PDCA-1-APC (BioLegend, 127016), Cd11c-Pacific Blue (BioLegend, 117322), F4/80-Pacific Blue (BioLegend, 123124), and Ly-6G-PE (BioLegend, 127606) and added to each sample. Samples were incubated at room temperature in a dark environment for 45 minutes, washed with PBS, and resuspended in 4% paraformaldehyde in PBS (Affymetrix). Flow cytometry was performed with a BD LSR II (BD Biosciences). After manual gating to exclude dead cells and debris, data corresponding to all remaining cells were analyzed and visualized using FlowJo software (Tree Star). Detection of autoantibodies Anti–dsDNA antibodies were detected in serum using the Mouse anti-dsDNA IgG2a ELISA Kit (Alpha Diagnostic International) according to manufacturer’s instructions. Renal pathology scoring Kidneys from 4 WT and 4 transgenic animals were analyzed. A semiquantitative scoring system (0, no involvement; 0.5, minimal involvement of <10% per section; 1, mild involvement of 10%–30% of section; 2, moderate involvement of 31%–60% of section; and 3, severe involvement >60% of section) was used to assess 13 different parameters of activity and chronicity: mesangial hypercellularity, mesangial deposits, mesangial sclerosis, endocapillary cellular infiltrate, subepithelial deposits, subendothelial deposits, capillary thrombi, capillary sclerosis, cellular crescents, organized crescents, synechiae, tubular atrophy, and interstitial fibrosis. An activity and chronicity index was generated by compiling scores from groups of related parameters. For activity, mesangial hypercellularity, mesangial deposits, endocapillary cellular infiltrate, and cellular crescents were considered; for chronicity, interstitial fibrosis, tubular atrophy, organized crescents, and capillary sclerosis were considered. Analysis of urine albumin/creatinine ratio Urine from 8 WT and 5 transgenic animals was analyzed. Urine was collected from animals within 1 week of euthanasia. Technical duplicates were performed for every sample. To calculate albumin-to-creatinine ratios, urinary albumin was measured using the Albuwell M Kit (Exocell) and urinary creatinine using the QuantiChrom Creatinine Assay Kit (BioAssay Systems), both according to the manufacturer’s protocol. Data availability RNA-seq data have been deposited in GEO (GSE128453). CyTOF data have been made publically available in FlowReposity under repository ID FR‑FCM‑Z2Y6 (35). Statistics qRT-PCR data were tested for statistical significance using 2-tailed Student’s t test assuming homoscedasticity. Significance was defined as P ≤ 0.05. RNA-seq data were tested for normality, and statistical significance was calculated using a 2-tailed Student’s t test, Mann-Whitney U test, or Friedman’s test, as appropriate. For CyTOF data, statistical analysis on the bubbled SPADE populations was performed using Prism 8.0 (GraphPad). P values were computed using unpaired Student’s t tests assuming homoscedasticity. P values were considered discoveries if they fell below an FDR of 10% using the 2-stage step-up method of Benjamini, Krieger, and Yekutieli (36). Study approval Procedures involving the care and the use of mice in this study were reviewed and approved by the University of Michigan Institutional Animal Care and Use Committee (protocol PRO00006657). Author contributions ACB, MGK, MEV, AAD, JMK, and JEG conceived the study and designed experiments; LCT, BDH, and CCB developed computational methods and analyzed the data; MGK, JF, DG, JL, XX, SE, SJW, SMR, JBH, YL, PWH, and MEV conducted the experiments; and ACB, JMK, and JEG wrote the paper with input from all authors, including MAB, MKS, RU, SS, CZ, JJV, FW, and NLW. Supplemental material View Supplemental data View Supplemental Table 1 View Supplemental Table 3 Acknowledgments This work was supported by the A. Alfred Taubman Medical Research Institute’s Taubman Institute Innovation Projects program (to JEG, JMK, LCT, and FW), the Parfet Emerging Scholar Award (to JMK), and the Frances and Kenneth Eisenberg Emerging Scholar Award (to JEG); the University of Michigan Babcock Endowment Fund (to LCT and JEG); the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH (5T32AR007197-40 to ACB; K01AR072129 to LCT; R01-AR071384 to JMK; R01-AR069071 to JEG; and P50-AR070590, R01-AR062546, R01-AR063437, and R01-AR073196 to NLW); the Office of the Director of the NIH (S10-OD020053 to FW); a Rogel Cancer Center Support Grant (NIH P30-CA046592 to BDH, SMR, and FW); the National Science Foundation (1511720, 1645229, and 1653611 to FW); a Rheumatology Research Foundation Innovative Research Award (to JMK); the Dermatology Foundation (to LCT); the Arthritis National Research Foundation (to LCT); and the National Psoriasis Foundation (to LCT and NLW). Footnotes Conflict of interest: The authors have declared that no conflict of interest exists. Copyright: © 2019 American Society for Clinical Investigation Reference information: JCI Insight. 2019;4(8):e127291. https://doi.org/10.1172/jci.insight.127291. References Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8(9):737–744. View this article via: PubMed CrossRef Google Scholar Tedeschi SK, Bermas B, Costenbader KH. Sexual disparities in the incidence and course of SLE and RA. Clin Immunol. 2013;149(2):211–218. View this article via: PubMed CrossRef Google Scholar Liang Y, et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat Immunol. 2017;18(2):152–160. View this article via: PubMed Google Scholar Ramírez A, Bravo A, Jorcano JL, Vidal M. Sequences 5’ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation. 1994;58(1):53–64. View this article via: PubMed Google Scholar Sarkar MK, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77(11):1653–1664. View this article via: PubMed CrossRef Google Scholar Ezzat M, El-Gammasy T, Shaheen K, Shokr E. Elevated production of serum B-cell-attracting chemokine-1 (BCA-1/CXCL13) is correlated with childhood-onset lupus disease activity, severity, and renal involvement. Lupus. 2011;20(8):845–854. View this article via: PubMed CrossRef Google Scholar Liu J, Berthier CC, Kahlenberg JM. Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon-Induced Up-Regulation of Interferon Regulatory Factor 1. Arthritis Rheumatol. 2017;69(9):1840–1849. View this article via: PubMed CrossRef Google Scholar Teichmann LL, Ols ML, Kashgarian M, Reizis B, Kaplan DH, Shlomchik MJ. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity. 2010;33(6):967–978. View this article via: PubMed CrossRef Google Scholar Ribero S, Sciascia S, Borradori L, Lipsker D. The Cutaneous Spectrum of Lupus Erythematosus. Clin Rev Allergy Immunol. 2017;53(3):291–305. View this article via: PubMed CrossRef Google Scholar Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. View this article via: PubMed CrossRef Google Scholar Andrews BS, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978;148(5):1198–1215. View this article via: PubMed CrossRef Google Scholar Amir el-AD , et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–552. View this article via: PubMed CrossRef Google Scholar Qiu P, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–891. View this article via: PubMed CrossRef Google Scholar Rai R, Chauhan SK, Singh VV, Rai M, Rai G. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. PLoS One. 2016;11(11):e0166312. View this article via: PubMed CrossRef Google Scholar Wieczorek IT, Propert KJ, Okawa J, Werth VP. Systemic symptoms in the progression of cutaneous to systemic lupus erythematosus. JAMA Dermatol. 2014;150(3):291–296. View this article via: PubMed CrossRef Google Scholar ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG. Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum. 1990;33(5):634–643. View this article via: PubMed CrossRef Google Scholar Raz E, Brezis M, Rosenmann E, Eilat D. Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J Immunol. 1989;142(9):3076–3082. View this article via: PubMed Google Scholar Voskuhl R. Sex differences in autoimmune diseases. Biol Sex Differ. 2011;2(1):1. View this article via: PubMed CrossRef Google Scholar Moroni G, et al. The value of a panel of autoantibodies for predicting the activity of lupus nephritis at time of renal biopsy. J Immunol Res. 2015;2015:106904. View this article via: PubMed Google Scholar Catrina AI, Deane KD, Scher JU. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford). 2016;55(3):391–402. View this article via: PubMed Google Scholar England BR, Thiele GM, Mikuls TR. Anticitrullinated protein antibodies: origin and role in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2017;29(1):57–64. View this article via: PubMed CrossRef Google Scholar Kuhn A, et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum. 2006;54(3):939–950. View this article via: PubMed CrossRef Google Scholar James JA, et al. Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus. 2007;16(6):401–409. View this article via: PubMed CrossRef Google Scholar Carroll JM, Crompton T, Seery JP, Watt FM. Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J Invest Dermatol. 1997;108(4):412–422. View this article via: PubMed CrossRef Google Scholar Seery JP, Carroll JM, Cattell V, Watt FM. Antinuclear autoantibodies and lupus nephritis in transgenic mice expressing interferon gamma in the epidermis. J Exp Med. 1997;186(9):1451–1459. View this article via: PubMed CrossRef Google Scholar Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–730. View this article via: PubMed CrossRef Google Scholar Wang Y, et al. Chronic skin-specific inflammation promotes vascular inflammation and thrombosis. J Invest Dermatol. 2012;132(8):2067–2075. View this article via: PubMed CrossRef Google Scholar Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22(12):1567–1572. View this article via: PubMed CrossRef Google Scholar Lichti U, Anders J, Yuspa SH. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc. 2008;3(5):799–810. View this article via: PubMed CrossRef Google Scholar Johnston A, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013;190(5):2252–2262. View this article via: PubMed CrossRef Google Scholar Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. View this article via: PubMed CrossRef Google Scholar Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. View this article via: PubMed CrossRef Google Scholar Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. View this article via: PubMed CrossRef Google Scholar Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010;Chapter 10:Unit10.17. View this article via: PubMed Google Scholar Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository ‑ A Resource of Annotated Flow Cytometry Datasets Associated with Peer‑reviewed Publications. Cytometry A. 2012;81(9):727–731. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491–507. View this article via: CrossRef Google Scholar
  4. APS: What Rheumatologists Should Know about Hughes Syndrome February 17, 2016 • By Graham R.V. Hughes, MD, FRCP. The problem that dogs the work of all of those treating patients with antiphospholipid syndrome (APS) is the apparent lack of knowledge of the syndrome, both by the general public, as well as by swaths of the medical fraternity. You Might Also Like Put Hughes Syndrome on Your Radar New Assays May Help in the Diagnosis & Management of Antiphospholipid Syndrome Why Antiphospholipid Antibody Syndrome Should Be On Your Radar Explore this issue February 2016 Perhaps it was ever thus—a syndrome less than 40 years old could be described as new, but a syndrome that is common, touches all branches of medicine and, above all, that is potentially treatable, surely deserves wider recognition. Some of the difficulties derive from the complex clinical nature of APS: the half diagnoses, such as the migraine patient’s diagnostic pathway, which stops at “migraine”; the “atypical angina” in a 40-year-old woman that goes no further than “atypical angina”; the second or third miscarriage that is accepted as one of nature’s misfortunes; or, especially, the memory loss in that same 40 year old who goes undiagnosed. And most troublesome, the common failure to appreciate the limitations of antiphospholipid (aPL) testing and the vital, pivotal concept of sero­negative APS. The story of APS has, for me, been an incredible journey, from the early days in the late 1970s and early 1980s, followed by the original series of publications describing the clinical features and antibody studies resulting in our description of the anti-cardiolipin syndrome and later, to the (still technically not totally correct) anti-phospholipid syndrome.1-8 In the Third International Antiphospholipid Conference in 1994 in Leuven, Belgium, my colleagues honored me by naming the syndrome, Hughes syndrome. Thirty years on, there is still great satisfaction in diagnosing and treating APS patients with such discordant-seeming features as cataplexy and stillbirth, avascular hip necrosis and vertigo, or abdominal angina and multiple fractures—to give examples from recent clinics. Why the Brain? For me, APS/Hughes syndrome is very much a neurological condition. Brain function does seem to be especially targeted—the more APS patients one sees, the wider and wider the neuropsychiatric ripples spread. There have, of course, been many promising lines of research into the pathogenesis of cerebral APS, and many mechanisms have been proposed, ranging from platelet activation, induction of tissue factor, disruption of the annexin A5 anticoagulant shield, endothelial activation and, of course, alteration of the permeability of the blood–brain barrier and direct binding to neuronal cell surfaces, some harking back to earlier forays by Bluestein, Denburg and ourselves into possible cross-reactivity between anti-lymphocyte antibodies and brain.9-13 Interactions between brain and clotting process have a long history, including the observation that the coagulation mechanism within the central nervous system has a number of differences from that found in other organs—the brain’s endothelium expressing little thrombomodulin, for example. Whatever the mechanism, it’s difficult to avoid the observation that treatment with anticoagulation (e.g., with low molecular weight [LMW] heparin) often dramatically reverses the symptoms, including the migraine, the memory difficulties and the chorea. Such observations suggest that the brain pathology in many cases might not be so much infarction, but might relate more to “sludging” of the blood supply and impaired oxygenation. Migraine & Stroke “Did you suffer from headaches as a teenager?” “Yes, doctor. They were almost weekly for a time. They went away for a few years, but they came back with a vengeance now. They run in my family.” So speaks the 30-year-old female patient with APS (the male members of the family appear less often in APS clinics). This is such an important diagnostic clue in the assessment of a patient with possible APS. Yet despite many years of experience of APS, there are surprisingly few data assessing the true role of APS in the wider world of migraine. There are so many reasons to study the association—the response to anticoagulation—usually good, often striking—the study of siblings and other family members of migraine/APS patients. And above all else, the links now being reported between migraine and stroke. Like migraine, stroke is one of the recognized complications of APS/Hughes syndrome. Figures as high as 1 in 5 young strokes (under 45) having positive aPL tests have been reported.14-19 However, as with migraine, recognition of aPL in the etiology of stroke is, in general, still poor. For example, childhood stroke—well recognized clinically—is a prime target for aPL studies. Some years ago, the U.K. government launched a major stroke initiative, educating the public about the symptoms, signs and treatment of stroke. The antiphospholipid syndrome wasn’t on the list. Seizures In 1985, we observed that in lupus patients, seizures were more common in those patients with positive aPL tests.20 Since then, it has become clear that epilepsy, in all its forms, is an important accompaniment of APS. So much so, that in one study of idiopathic epilepsy in teenagers, 1 in 5 was found to be aPL positive.21 The initial midwife or obstetrician’s screening should include a simple questionnaire to rule out APS. The ramifications of these observations are many. Let me give two clinical examples: Firstly, temporal lobe epilepsy in APS may be under-recognized. One of my patients, a woman with classical APS, became an EEG technician. During her training she used four of her siblings as guinea pigs. Three had abnormal temporal lobe activity. It’s interesting to see how often a family history of epilepsy crops up in the history taking of patients with APS. The second clinical anecdote has been published elsewhere.22 A 42-year-old patient had a past history of mild lupus. However, her major problem—and one with a significant impact on her busy life—was recurrent seizures, both petit mal and grand mal, the latter requiring specialist care and the combination of a number of anti-epileptic drugs. During her stay in London, she developed a DVT (she was found to be aPL positive), and routine anticoagulation with warfarin was started. An immediate and unexpected bonus was a marked reduction in the frequency and severity of the seizures, requiring far less aggressive anti-epileptic treatment. Memory Loss Possibly the commonest manifestation of APS is memory loss. Often, the problem only sees the light of day when the patient is asked about the symptom. So many patients confess to worries about Alzheimer’s. To date, detailed clinical studies are few and far between. From time to time, and, it must be said, in a fairly desultory fashion, we have carried out psychometric testing on selected APS patients—and the results have often been surprising. Even more so, given the striking improvement seen in memory tests when anticoagulation is commenced.23 Multiple Sclerosis In view of the prominence of neurological features, including visual disturbance and fluctuating myelopathy, seen in APS, it is not surprising that a number of cases are diagnosed as MS.24,25 The subject is far from straightforward. Some in neurology declare that positive aPL tests are, in fact, sometimes seen in classical MS. I would prefer to turn the picture around. Such patients, at least some, may be APS first and MS second. Although anecdotally a number of such cases respond to anticoagulation, in others the response is, at best, borderline. Uthman has recently reviewed the fairly substantial literature on APS vs. MS.26 Other Neurological Features These include balance problems (a number of cases presenting as Meniere’s), chorea (sometimes severe),27,28 anosmia, sleep disturbance (including cataplexy and narcolepsy) and, recently, autonomic disturbance with a series of cases of POTS (postural orthostatic tachycardia syndrome).29 One of the questions on which there is debate is the prevalence of psychiatric manifestations. It has been my view that acute psychosis has been more a feature of lupus than APS, but in this I may be wrong. One of my patients, a woman with APS and OCD (obsessive compulsive disorder), improved with anticoagulation treatment. Interestingly, her teenage son, also a patient with OCD (and aPL positive), found the neuropsychiatric manifestations were far less prominent when aspirin treatment was started. Not the Brain Bone & joints—Have you suffered any fractures? A question not perhaps part of the routine history taking in APS patients. And yet, spontaneous bone fracture is becoming well recognized following the report of 27 spontaneous metatarsal fractures by Dr. Shirish Sangle in APS patients.30 Anecdotal reports suggest that (ischemic) bone fractures may be an important manifestation of the disease: My colleague, Professor Munther Khamashta, has a Hughes syndrome patient with normal DEXA and parathyroid studies who has had 57 spontaneous fractures. Clearly, this is an important area for clinical research. Likewise, avascular necrosis (AVN) hip pain is not uncommon in our APS patients. MRI has shown early AVN in some cases with no other risk factors, such as steroids. My clinical impression is that the hip pain often improves when heparin or warfarin is started. Heart—A major concern is the presence of angina and other cardiac symptoms in APS. Despite a few early reports of myocardial ischemia and coronary thrombosis, it’s only in recent years that publications revealing a high frequency of these complications have increased in frequency. Two examples are the research of Greco et al showing a relatively high prevalence of positive aPL tests in patients with cardiac ischemia, and the striking observation that women smokers on the pill who were aPL positive had a relative risk of 22 times for the development of myocardial infarction.31,32 The cardiac links are increased by the reporting of an association with cardiac syndrome X, angina with normal coronary angiographs.33 It’s a fair bet that aPL testing will become a standard in the cardiology clinic, especially in symptomatic women under 40. GI tract & liver—Since we made our observations on focal stenotic lesions in various arteries, including celiac and mesenteric arteries, we have focused more on symptoms of abdominal angina in patients with aPL/APS.34 This is a difficult condition to quantify, but we have seen a number of cases in whom clopidogrel or heparin has resulted in improvement (sometimes marked) in post-prandial pain. Although liver involvement in lupus is rare, abnormal liver function tests in APS are seen frequently. Although these can presage serious liver thrombosis, such as Budd-Chiari syndrome or the HELLP syndrome in pregnancy warning of impending catastrophic APS, more commonly, they have a more benign prognosis.35,36 One very positive case history: Back in the early 1980s, I saw a teenage girl with a DVT, positive aPL and Budd-Chiari syndrome. Prognosis poor? Thirty-plus years on, she remains well—on careful lifelong warfarin managed by her physicians in Portugal. Goldblatt’s disease, the kidney & APS—Renal artery stenosis, seen on a clear background of otherwise normal arteries, can mimic Goldblatt’s early observations on the development of hypertension in animals with experimentally occluded renal arteries. The discovery of renal artery stenosis localized lesions by Sangle led to similar findings in other vessels, leading to theories about localized thrombotic/endothelial pathology.37 Skin: livedo reticularis, an enigma—Although skin ulcers, dilated veins and subungual splinter hemorrhages are well-known sequelae of skin thrombosis in APS, livedo reticularis has an aura of mystery.38,39 Diagnostically, its presence is an important clue in patients suspected of having Hughes syndrome—including seronegative APS. Looking back over some of the conditions mentioned in this article—MS, migraine, multiple fractures, memory problems—for example, one wonders whether careful noting of the presence or absence of livedo might prove significant in the differential diagnosis of these conditions. One thing is certain: The presence of livedo adds an extra dimension to the severity of the clinical picture. Pregnancy Of course, the headline story of the syndrome is in pregnancy, where the success rate of healthy deliveries in aPL-positive pregnancies has soared from under 15% to over 90%. Without a doubt, diagnosis and treatment of these cases has been a significant advance in the world of obstetrics.40 Sadly, all of us working with APS have looked after aPL-positive patients (some of whom had suffered early miscarriages) who lost a baby late in the pregnancy. Stillbirth. Two years ago, The Times of London published a lead article titled, “The Stillbirth Scandal,” highlighting the poor stillbirth figures in the U.K.41 Yet some cases of stillbirth in the aPL-positive women could have been prevented. For example, a recent study from Utah found that aPL pregnancies had a three- to fivefold increased odds of stillbirth.42 Would more routine aPL testing in pregnancy help? Cost considerations apply. Miscarriage is common, and there are numerous causes. Thus, the current recommendation is to reserve testing for those women with three or more miscarriages. This does seem harsh. Perhaps a simple screening process might help. I have suggested that part of the initial midwife or obstetrician’s screening should include a simple three-part questionnaire: Have you had a thrombosis? Are you a migraine sufferer? Do you have a family history of autoimmune disease (i.e., lupus, RA, multiple sclerosis, thyroid disease)? I am sure that such a simple questionnaire might help identify a small at-risk group. In most centers, once the mother and baby are safely sent home, there is no long-term follow-up. Yet often, APS patients presenting at, say, the age of 40 with a thrombotic problem, give a past history of miscarriage 20 years earlier. In an ideal world, women with recurrent miscarriage deserve regular long-term follow-up. But the world is far from ideal. Lupus & APS The early clinical studies of APS were carried out in lupus clinics, and could well have included “lupus features.” Perhaps surprisingly, time has shown little difference between primary APS and the APS associated with lupus. There are, undoubtedly, some classical features of lupus (e.g., Libman Sachs endocarditis, stroke, seizures) that are more likely to be aPL related. It also appears likely that aPL positivity in lupus confers a higher chronicity index. The passage of time has also revealed one positive finding: It’s very unusual for patients with primary APS to develop lupus in later years. The Big 3 The association between Hughes syndrome, Sjögren’s and hypothyroidism is so common that I have taken to calling them the big 3. Clinically, it’s an important association because the clinical symptoms of the three conditions—fatigue, cold circulation, aches and pains, and balance and memory problems—are common to all three. Similarly, many of these patients are burdened with the label fibromyalgia. Each of the three interconnecting syndromes can respond well to treatment—for example, the clinical Sjögren’s to hydroxychloroquine and so on. Many of these patients are on my two trees treatment—willow (aspirin) and cinchona (quinine). Seronegative APS I believe that one of the benefits of a trainee clinician’s time spent in the lab is the recognition that many laboratory tests are open to variation. Many, many studies have attempted to assess the importance of titer, immunoglobulin class, triple or double positivity, relevance of “other” aPL such as anti-phosphatidyl-serine etc.43,44 Broadly, all of these have relevance, but in the clinic, some don’t fit, such as those patients with all of the clinical features of APS whose aPL tests remain doggedly negative. Some years ago, we wrote a paper introducing the term seronegative APS, calling attention to patients with strong clinical features of APS but with negative tests.45 The concept goes back to the early days of seronegative RA and seronegative lupus—both of which labels, although based on clinical observation alone, had important therapeutic and prognostic consequences. Three possible explanations for seronegative APS are: 1) The diagnosis is incorrect (unlikely in all cases); 2) the previously positive tests have become negative over time (uncommon in my experience); or 3) new tests are needed.46 Perhaps the most potent reason for open-mindedness about seronegative APS comes from family studies. Some weeks ago, I saw a pair of identical twins—the first with classical seropositive APS, who later brought along her (absolutely) identical twin sister. The second twin had identical sets of symptoms, but unlike the first twin, she had negative aPL tests. Both patients responded to treatment. Once a year, we hold a patients meeting at our hospital. At the last meeting, we arranged a simple anonymous questionnaire with two questions: Are you a patient with APS or a friend/spouse? Have you any close female relative (sister, mother, aunt) with autoimmune disease (i.e., lupus, RA, thyroid, multiple sclerosis, APS)? The result: Sixty percent of patients had a positive history of autoimmune illnesses in close relatives. Less than 20% of friends/spouses answered positive. It may be that my own experience is skewed by referral bias from families of APS patients—but seropositive or not, most patients with seronegative APS respond just as well to treatment. If some of these individuals in the family study did, in fact, have seronegative APS yet were potentially responsive to treatment, then the possibilities are intriguing. Perhaps a higher percentage of our migraine, young stroke, young angina patients might benefit from a closer look for more of the clues to APS—the dry Schirmer’s, the livedo, the family history of autoimmune disease—for example. Treatment Aspects In many ways, it’s disappointing to confess that 30 years on, there are few new treatments. Introduction of the new oral anticoagulants in the treatment of APS has been predictably cautious, and it is too early to generalize.47 Statins, IVIG and hydroxychlorquine have been thrown into the mix and, of course, anti-B cell therapy has received favorable anecdotes. A recent study from Paris suggested that sirolimus, used in renal transplantation, might have a protective effect on aPL-induced vasculopathy.48 So in 2016, the current treatment of APS is still largely confined to aspirin, clopidogrel, heparin and warfarin. Low-dose aspirin, despite its detractors, is, of course, first choice in many APS patients. However, clopidogrel remains a useful alternative in patients with gastritis or in asthmatics. But there is a third role for clopidogrel—important in the real world of practical medicine—that is, in those patients who, for whatever reason, have tried aspirin, without clear benefit. Heparin—Low molecular weight heparin has, in most countries, largely replaced old heparin, and with it, fears of thrombocytopenia and osteoporosis have largely disappeared. This is an important point to make, because many practitioners are reluctant to prolong heparin usage. Two observations: First, a number of patients improve dramatically on heparin, only to feel less well on warfarin. Where to go next? When dosage issues, warfarin resistance and compliance are (hopefully) ruled out, one immediate option is a temporary return to heparin. In some cases, temporary has turned into semi-long term. In our APS clinic we have a couple dozen such patients who, by choice, have remained on subcutaneous heparin for two years or more. Yes, they have experienced bruising, but so far, we have not seen worsening DEXA scans. The second (and very clinical) observation concerns a heparin trial. It is a regular observation that aPL/APS patients on heparin during pregnancy are often headache free for the full eight or nine months. This led us to develop a clinical tool—a therapeutic trial that has stood us in good stead. The trial is a three- or four-week course of LMW heparin.49 Let me give an example of its use: In the aPL/APS patient with increasingly severe headaches despite aspirin/clopidogrel (and with a normal brain MRI), a trial of 10,000 units of dalteparin (or enoxaparin) for three or four weeks can achieve substantial results. First, it can give a surprisingly clear indication of whether anticoagulation is the correct path. Second, in the traumatized patient who has been down the familiar pathway of multiple specialist consultations, with borderline clinical success, it can be a major turning point—the first palpable sign of improvement. Warfarin—There is little new to say about warfarin. It has been vilified by the media, but it remains one of the most useful drugs in our armamentarium. Warfarin, to put it in simple terms, protects against stroke and heart attack in APS. Mention has been made of the frequent need for a higher INR in many APS patients—especially those with neurological features. I am a strong believer in the use of self-testing INR machines whenever possible in our patients. Sadly, some anticoagulant clinics oppose the use of self-testing machines. To me, this is wrong. Look at the freedom self-testing for insulin-dependent diabetics has achieved. As physicians, I believe we have a duty (until better, newer anticoagulants become established) to support warfarin as a largely safe, effective medicine that has saved many thousands of lives. Miscellany Spontaneous bone fracture is becoming well recognized following the report of 27 spontaneous metatarsal fractures by Dr. Shirish Sangle in APS patients. Image Credit: Puwadol Jaturawutthichai/shutterstock.com The Family—It comes as no surprise that a family history is an important clue in Hughes syndrome. Autoimmune disease (particularly thyroid) crops up regularly as a diagnosis in relatives of our patients. But how often are these family cases diagnosed? Examples could include the 17-year-old daughter of an APS patient suffering from headache and glandular fever, the sibling with multiple sclerosis or the mother and aunt of a newly diagnosed APS patient who suffered a stroke in their early 40s. It is not inconceivable that APS has changed the course of history, as in the case reported by my friend, Dr. Gerald Weissmann, of Queen Anne of England who had 17 failed pregnancies and died childless, thereby bringing an end to the Stuart reign and the start of the Hanoverians—with George III, American Colony taxes, the revolution and the birth of the U.S.50 The Offspring—To date, most studies have suggested that the offspring of aPL-positive mothers have no major adverse effects (other than, perhaps, the later-developing inherited APS features in some). However, some worrying case reports of fetal and neonatal problems indicate a need for further study. The ongoing studies of Drs. Anne Parke, Angela Tincani, Maria Claire Boffa and others will, in time, provide some of these missing data.51,52 Classification vs. diagnosis— Dear Doctor, I would be grateful if you could advise on this patient. She developed thrombosis on the oral contraceptive pill. She has had one positive test for aPL, but did not have a repeat test 12 weeks later. As in the case of lupus, classification criteria do sometimes become mixed up with diagnosis. Many patients don’t come armed with tests “12 weeks apart” (this criterion was introduced to cover the risk that an inter-current infection might have led to a transient positive aPL test—not a major factor in our assessment of this patient). There are also financial considerations, such as in the following study from Beirut, Lebanon. “Only 50.5% had both aCL and LA tested. … The cost of each test was around US$50 for the patient. … It remains to be seen whether the test costs might partly explain the very small percentage of patients who did undergo a follow-up confirmatory test.” The recognition of the many non-thrombotic manifestations of APS has added to the importance of separating diagnosis from classification. Perhaps, laboratory advances in the measurement of potential risk markers will, in time, come to our aid.44 Fear of Flying—This clinical anecdote appears regularly in my clinic. So much so that I believe it needs further study. A number of my APS patients, notably before treatment has been started, suffer badly from prolonged jet lag after a long-haul flight, with fatigue, headache and confusion, sometimes lasting for days. Interestingly, once heparin or warfarin treatment is successfully commenced, this phenomenon disappears. Whether these symptoms relate to mild cerebral hypoxia second to slightly reduced cabin pressure is not known. Nevertheless, some of my patients with APS will supplement their aspirin treatment prior to a long-haul flight with an injection of LMW heparin. Although the placebo effect may be considerable, I am sufficiently impressed by the clinical experience of these (observant) patients to believe that the phenomenon of prolonged jet lag in many of our patients is very real. The Future—At the 14th International Congress on Antiphospholipid Antibodies held in Rio de Janeiro in 2013, I was asked for my predictions on the future of APS.23 In summary, I believe: aPL testing will become worldwide and routine; Over-the-counter aPL testing kits will become available; A substantial subset of migraine sufferers will have new hope; APS will become recognized as the major link between migraine and stroke; Heart attacks in young women (especially those under 45) will be reduced; Strokes in those under 45 will be reduced; Some cases of accelerated arterial disease will be recognized as being associated with (untreated) aPL; Some cases of memory loss are treatable; APS will continue to have a profound effect on our clinical assessment and treatment of lupus; and Finally, to return to the opening theme, the incidence of stillbirth will be reduced, thanks, in part, to a more proactive approach to aPL testing in pregnancy. To repeat a sentence taken from the 1983 paper:1 For those of us hardened into nihilism by years of study of various autoantibodies in SLE, there is a rare sense of excitement at the implications of the associations now being reported. Thirty years on, that clinical excitement remains undimmed. Graham R.V. Hughes, MD, FRCP, is a consultant rheumatologist and head of the London Lupus Centre. He trained at The London Hospital, and spent two years in New York working on the introduction of the DNA-binding test, under the leadership of Dr. Charles Christian. In 1971, he opened a specialist clinic in London, dealing uniquely with lupus and related diseases. He is founder and editor of the international journal, Lupus. In 1983, he described the antiphospholipid syndrome and in 1991, was awarded the ILAR (world research) prize for this work. Other honors include Doctor Honoris Causa in the Universities of Marseille and Barcelona, and Master of the ACR. References Hughes GR. Thrombosis, abortion, cerebral disease, and the lupus anticoagulant. Br Med J (Clin Res Ed). 1983 Oct 15;287(6399):1088–1089. Harris EN, Gharavi AE, Boey ML, et al. Anticardiolipin in antibodies: Detection by radioimmunoassay and association with thrombosis in SLE. Lancet. 1983 Nov 26;2(8361):1211–1214. Boey ML, Colaco CB, Gharavi AE, et al. Thrombosis in SLE: Striking association with the presence of circulating lupus anticoagulant. Br Med J (Clin Res Ed). 1983 Oct 8;287:1021–1023. Hughes GR. The Prosser White oration 1983: Connective tissue disease and the skin. Clin Exp Dermatol. 1984 Nov;9(6):535–544. Asherson RA, Mackworth-Young CG, Boey ML, Hughes GRV. Pulmonary hypertension in systemic lupus erythematosus. Br Med J (Clin Res Ed). 1983 Oct 8;287(6398):1024–1025. Derue GJ, Englert HJ, Harris EN, et al. Fetal loss in systemic lupus: Association with anticardiolipin antibodies. J Obstet Gynaecol. 1985;5(4):207–209. Hughes GR, Harris NN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol. 1986 Jun;13(3):486–489. Hughes GR. Hughes’ syndrome: The anticardiolipin syndrome. A historical view.Lupus. 1998;7 Suppl 2:S1–S4. Carecchio M, Cantello R, Comi C. Revisiting the molecular mechanism in antiphospholipid syndrome: Beyond vascular damage. J Immunol Res. 2014;2014:239398. Bluestein HG, Zvaifler NJ. Brain-reactive lymphocytotoxic antibodies in the serum of patients with SLE. J Clin Invest. 1976 Feb;57(2):509–516. Bresnihan B, Oliver N, Grigor R, Hughes GR. Brain-reactivity of lymphocytotoxic anitibodies in systemic lupus erythematosus with and without cerebral involvement. Clin Exp Immunol. 1977 Dec;30(3):333–337. Bresnihan B, Hohmeister R, Cutting J, et al. The neuropsychiatric disorder in SLE: Evidence for both vascular and immune mechanisms. Ann Rheum Dis. 1979 Aug;38(4):301–306. Denburg SD, Behmann SA, Carbotte RM, et al. Lymphocyte antigens in neuropsychiatric systemic lupus erythematosus. Relationship of lymphocyte antibody specificities to clinical disease. Arthritis Rheum. 1994 Mar;37(3):369–375. Harris EN, Gharavi AE, Asherson RA, et al. Cerebral infarction in SLE. Association with anticardiolipin antibodies. Clin Exp Rheumatol. 1984 Jan-Mar;2(1):47–51. Navarrete MG, Brey RL, Levine SR. “Cerebral disease in the antiphospholipid syndrome” in Hughes Syndrome—Antiphospholipid Syndrome. Khamashta MA, ed. Springer, London: 2000. Sanna G, Bertolaccini ML, Cuadrado MJ, et al. Central nervous system involvement in the antiphospholipid (Hughes) syndrome. Rheumatology (Oxford). 2003 Feb;42(2):200–213. Etminan M, Takkouche B, Isorna FC, Samii A. Risk of ischaemic stroke in people with migraine: Systemic review and meta-analysis of observational studies. BMJ. 2005 Jan 8;330(7482):63. Nencini P, Baruffi MC, Abbate R, et al. Lupus anticoagulant and anticardiolipin antibodies in young adults with cerebral ischaemia. Stroke. 1992 Feb;23(2):189–193. Hughes GR. Antiphospholipid syndrome, migraine and stroke. Lupus. 2010 Apr;19(5):555–556. Mackworth-Young CG, Hughes GR. Epilepsy: An early symptom of systemic lupus erythematosus. J Neurol Neurosurg Psychiatry. 1985 Feb;48(2):185. Cimaz R, Meroni PL, Shoenfeld Y. Epilepsy as part of systemic lupus erythematosus and systemic antiphospholipid syndrome (Hughes syndrome). Lupus. 2006;15(4):191–194. Hughes GR. “Diplomatic epilepsy” in Understanding Hughes Syndrome. Springer-Verlag, London: 2009. Hughes GR. Hughes syndrome/APS. 30 years on, what have we learnt? Opening talk at the 14th International Congress on antiphospholipid antibodies. Rio de Janeiro, October 2013. Lupus. 2014;23:400–406. Cuadrado MJ, Khamashta MA, Ballesteros A, et al. Can neurologic manifestations of Hughes (antiphospholipid) syndrome be distinguished from multiple sclerosis? Analysis of 27 patients and review of the literature. Medicine (Baltimore). 2000 Jan;79(1):57–68. Hughes GR. Migraine, memory loss, and “multiple sclerosis.” Neurological features of the antiphospholipid (Hughes’) syndrome. Postgrad Med J. 2003 Feb;79(928):81–83. Uthman I, Noureldine MH, Berjawi A, et al. Hughes syndrome and multiple sclerosis. Lupus. 2015 Feb;24(2):115–121. Cervera R, Asherson RA, Font J, et al. Chorea in the antiphospholipid syndrome. Clinical, radiologic, and immunologic characteristics of 50 patients from our clinics and the recent literature. Medicine (Baltimore). 1997 May;76(3):203–212. Baizabal-Carvallo JF, Bonnet C, Jankovic J. Movement disorders in systemic lupus erythematosus and the antiphospholipid syndrome. J Neural Transm (Vienna). 2013 Nov;120(11):1579–1589. Schofield JR, Blitshteyn S, Shoenfeld Y, et al. Postural tachycardia syndrome (POTS) and other autonomic disorders in antiphospholipid (Hughes) syndrome (APS). Lupus. 2014 Jun;23(7):697–702. Sangle S, D’Cruz DP, Khamashta MA, et al. Antiphospholipid antibodies, systemic lupus erythematosus, and non-traumatic metatarsal fractures. Ann Rheum Dis. 2004 Oct;63(10):1241–1243. Greco TP1, Conti-Kelly AM, Greco T Jr., et al. Newer antiphospholipid antibodies predict adverse outcomes in patients with acute coronary syndrome. Am J Clin Pathol. 2009 Oct;132(4):613–620. Urbanus RT, Siegerink B, Roest M, et al. Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: A case-control study. Lancet Neurol. 2009 Nov;8(11):998–1005. Nair S, Khamashta MA, Hughes GR. Syndrome X and Hughes syndrome. Lupus. 2002;11(5):332. Sangle SR, Jan W, Lau IS, et al. Coeliac artery stenosis and antiphospholipid (Hughes) syndrome/antiphospholipid antibodies. Clin Exp Rheumatol. 2006 May–Jun;24(3):349. Mackworth-Young CG, Melia WM, Harris EN, et al. The Budd-Chiari syndrome. Possible pathogenetic role of anti-phospholipid antibodies. J Hepatol. 1986;3(1):83-86. Hanouna G, Morel N, Le Thi Huong D, et al. Catastrophic antiphospholipid syndrome and pregnancy: An experience of 13 cases. Rheumatology (Oxford). 2013 Sep;52(9):1635–1641. Sangle SR, D’Cruz DP, Jan W, et al. Renal artery stenosis in antiphospholipid syndrome (Hughes) and hypertension. Ann Rheum Dis. 2003 Oct;62(10):999–1002. Englert HJ, Loizou S, Derue GG, et al. Clinical and Immunological features of livedo reticularis in lupus. Am J Med. 1989 Oct;87(4):408–410. Sangle SR, D’Cruz DP. Livedo reticularis: An enigma. Isr Med Assoc J. 2015 Feb;17(2):104–107. Ateka-Barrutia O, Khamashta MA. The challenge of pregnancy for patients with SLE. Lupus. 2013 Oct;22(12):1295–1308. Hughes GR. The stillbirth scandal. Lupus. 2013 Jul;22(8):759–760. Silver RM, Parker CB, Reddy UM, et al. Antiphospholipid antibodies in stillbirth. Obstet Gynecol. 2013 Sep;122(3):641–657. Rodriguez-Garcia JL, Bertolaccini ML, Cuadrado MJ, et al. Clinical manifestations of antiphospholipid syndrome (APS) with and without antiphospholipid antibodies (the so-called ‘seronegative APS’). Ann Rheum Dis. 2012 Feb;71(2):242–244. Meroni PL, Chighizab CB, Rovelli F, et al. Antiphospholipid syndrome in 2014: More clinical manifestations, novel pathogenic players and emerging biomarkers. Arthritis Res Ther. 2014;16(2):209. Hughes GR, Khamashta MA. Seronegative antiphospholipid syndrome. Ann Rheum Dis. 2003 Dec;62(12):1127. Rodguez-Garcia JL, Bertolaccini ML, Cuadrado MJ, et al. Clinical manifestations of antiphospholipid syndrome (APS) with and without antiphospholipid antibodies. Ann Rheum Dis. 2012 Feb;71(2):242–244. Giles I, Khamashta M, D’Cruz D, et al. A new dawn of anticoagulation for patients with antiphospholipid syndrome. Lupus. 2012 Oct;21(12):1263–1265. Canuad G, Bienaimé C, Taborin F, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. New Eng J Med. 2014 Jul 24;371(4):303–312. Hughes GR. Heparin, antiphospholipid antibodies and the brain. Lupus. 2012 Sep;21(10):1039–1040. Weissmann G. Queen Anne’s lupus: Phospholipids and the course of the empire. FASEB J. 2014 Apr;28(4):1527–1530. Mekinian A, Lachassinne E, Nicaise-Roland P, et al. European registry of babies born to mothers with antiphospholipid syndrome. Ann Rheum Dis. 2013 Feb;72(2):217–222. Nalli C, Iodice A, Andreoti L, et al. Children born to SLE and APS mothers. Lupus. 2014 Oct;23(12):1246–1248. Major S, Pashayan N, Atweh S, et al. Practice patterns of antiphospholipid syndrome at a tertiary teaching hospital in Lebanon. Lupus. 2002;11(11):759–764. https://www.the-rheumatologist.org/article/aps-what-rheumatologists-know-about-hughes-syndrome/?singlepage=1
  5. APRIL 2019 11 April 2019 by Professor Graham R V Hughes MD FRCP Easter comes late this year. Frenetic Brexit politics – the Westminster establishment fighting to overturn the ‘popular vote’. So sad. Last week I gave a lecture at an ‘immuno-therapy’ meeting in Madrid. Three hundred attendees, including representatives of the Spanish patients’ APS Society. The atmosphere was fantastic. So many doctors (and patients’) wanting to learn more about our syndrome. Talking about ‘learning more’, we now have a date for our own Patients’ Meeting – Friday, 13th September 2019. (For details of the programme and admission, please visit our website: www.ghic.world). This year we are opening up the meeting to include topics on Sjogren’s and lupus, as well as antiphospholipid syndrome. I will also send this blog, as well as details or our annual Patients’ Meeting, to our colleagues in Spain. Patient of the Month “I still feel tired all the time”. Mrs J.S. aged 55, was referred by her G.P. complaining of a variety of symptoms, including aches and pains, headaches, constipation, pins and needles and mental sluggishness. Above all else, she felt constantly fatigued. Despite this very full set of symptoms, the diagnosis remained uncertain. The pins and needles in both hands were put down to carpal tunnel syndrome. But there was little else to find. In view of the frequent headaches, Mrs J.S. was referred to a neurologist who arranged for further tests, including a brain MRI (which showed two small ‘dot’ lesions – reported as probably not significant. To her credit, the neurologist considered lupus and arranged lupus blood tests among the more routine ones. The tests came back showing a normal blood count. However, the ESR (the guide to inflammation) came back ‘borderline positive’ at 35 (normal under 20). The tests for lupus were essentially negative (anti-DNA negative, ANA ‘weak’ (1 in 80). What is the diagnosis (1)? The penny dropped. Could this be thyroid? Bilateral carpal tunnel syndrome is certainly seen in ‘low thyroid’, and significantly Mrs J.S. had a sister with ‘Hashimotos thyroiditis’ – and underactive thyroid with auto-immune features. As with all her other tests the thyroid blood tests were ‘borderline’. Nevertheless, the fatigue, the constipation, the aches and pains, could all be down to ‘low thyroid’. Following a *‘kerbside consult’, with her endocrinology colleague, she instituted thyroxine treatment. Within 2 months the pins and needles were gone and the mental sluggishness, as well as the constipation, were improving. BUT – the aches and pains and the fatigue remained – as bad as ever. What is the diagnosis (2)? It turned out that Mrs J.S. had suffered a series of miscarriages in her early 20’s and she and her husband remained childless. Could the problems – especially the frequent headaches – be due to Hughes Syndrome? Sure enough the antiphospholipid antibody (aPL) tests were strongly positive – not even ‘borderline’. She was started on clopidogrel (‘Plavix’) – an anti-clotting drug similar to aspirin (Mrs J.S. had previously tried aspirin but found it caused indigestion. Result? An almost immediate lessening of the headaches. And, if anything, a further improvement in her memory problems. BUT: no improvement in the fatigue or the aches and pains. What is the diagnosis (3)? Mrs J.S. was referred to a lupus clinic. Again, the results were similar (‘borderline’ ANA and negative anti-DNA). The lupus clinic doctor had seen this before – possible ‘Sjogren’s syndrome’. And, sure enough, the Shirmer’s test – a simple ‘blotting paper’ eye test was completely dry – a useful and very inexpensive screening test for the dry eyes of Sjogren’s Syndrome. Low dose hydroxychloroquine (Plaquenil) (one a day) was started. Three months later at follow-up clinic, ‘fatigue gone. Aches gone. Back to normal life”. What is this patient teaching us? I often talk of ‘The Big Three’ diseases – Lupus, Sjogren’s and Hughes Syndrome, which can overlap clinically However, the world of auto-immune diseases in which I practice includes another ‘big three’, which frequently go together : Hughes Syndrome, Sjogren’s Syndrome and low thyroid (often, specifically, Hashimoto’s thyroiditis) – three ‘named’ syndromes. Clearly, to miss one or even two of the triad would be an ‘under-treatment’. The three conditions can have similar features. And fortunately, potentially very successful treatment – thyroid, aspirin (or Plavix) and hydroxychloroquine. I call the combination of aspirin and hydroxychloroquine (derived from quinine) my ‘two trees’ – treatment –willow and cinchona. Perhaps the biggest lesson from this patient is that there may be more than one diagnosis causing the problems. PROFESSOR GRAHAM R V HUGHES MD FRCP Head of The London Lupus Centre London Bridge Hospital http://www.ghic.world/blog/april-2019
  6. UK government proposes sweeping new regulations of online content Companies could face fines if they fail to take down content quickly. TIMOTHY B. LEE - 4/9/2019, 1:33 AM Enlarge / British Prime Minister Theresa May. Jack Taylor/Getty Images The British government is considering sweeping new laws to regulate problematic content online, ranging from terrorist propaganda to fake news. A new proposal unveiled on Monday would impose a new "duty of care" on websites hosting user-submitted content. Under the plan, a new UK agency would develop codes of practice outlining how sites should deal with various types of harmful content. The new proposal follows last month's mass shooting in Christchurch, New Zealand, which left 50 people dead. In the wake of that attack, Australia passed a new law that requires major platforms to quickly remove violent online material—or face harsh fines and possibly even jail time. On Monday, a committee of the EU parliament backed a law that would fine online platforms up to 4 percent of their revenue if they failed to take down terrorist content within four hours. Britain's proposal is much broader, requiring technology companies to police their platforms for a wide range of objectionable material. Companies could face fines if they don't remove harmful material quickly. A 100-page white paper from Theresa May's government details the many categories of content that would be governed by the new rules, including child pornography, revenge pornography, cyberstalking, hate crimes, encouragement of suicide, sale of illegal goods, sexting by minors, and "disinformation." The proposal would also try to stop inmates from posting online content in violation of prison rules. Such a sweeping proposal would be unlikely to pass muster in the United States, where the First Amendment sharply limits government regulation of online content. But America is unusual; most countries have a much narrower concept of free speech that leaves governments substantial latitude to regulate content they regard as harmful. Still, a big question is how to crack down on harmful speech without unduly burdening the speech of legitimate users—or of unduly burdening the operators of smaller websites. Fundamentally, regulators have two options here. They can require online operators to take down content only after they've been notified of its existence, or they can require platforms to proactively monitor uploaded content. Current law Under the EU's E-Commerce Directive, current UK law shields online service providers from liability for content unless they have actual knowledge of its existence. But the UK government is now re-thinking that approach. "The existing liability regime only forces companies to take action against illegal content once they have been notified of its existence," the white paper says. "We concluded that standalone changes to the liability regime would be insufficient." Instead, the UK government says it's opting for a "more thorough approach," requiring technology companies to "ensure that they have effective and proportionate processes and governance in place to reduce the risk of illegal and harmful activity on their platforms." Of course, forcing technology companies to proactively monitor its platforms for objectionable content could create problems of their own, leading to unnecessary removal of legitimate content or eroding user privacy. UK regulators say there's no need to worry about this. "The regulator will not compel companies to undertake general monitoring of all communications on their online services, as this would be a disproportionate burden on companies and would raise concerns about user privacy," the document states. However, it says, there is "a strong case for mandating specific monitoring that targets where there is a threat to national security or the physical safety of children." Vague by design If that seems vague, that's by design. Rather than spelling out the precise obligations of online service providers in its initial proposal, the government plans to create a new regulatory agency and have it write up specific guidelines for the various types of unsavory content that could show up on technology platforms. Monday's publication of the online-harms white paper is just the first step to developing these new regulations. The public now has 12 weeks to comment on the proposal. The government will then take those comments into account as it drafts a final legislative proposal. If something like this proposal does become law, it could have significant impacts beyond the borders of the United Kingdom. The Internet is global, and we can expect the United Kingdom to demand that objectionable content be made inaccessible in the UK regardless of who originally uploaded it. In principle, major platforms could use geoblocking technology to prevent Britons from accessing objectionable content hosted in the United States or elsewhere. But technology companies may decide it's easier to just take down objectionable content for everyone—especially if other jurisdictions pass similar laws. As a result, America's strong free-speech tradition might become less and less relevant online, as online content policies are increasingly driven by countries with more activist approaches. https://arstechnica.com/tech-policy/2019/04/uk-government-proposes-sweeping-new-regulations-of-online-content/
  7. The Prevalence of Iron Deficiency Anemia in Primary Antiphospholipid Syndrome Karin KLACK, 1 Vanessa MONMA, 1 Karina PELIÇARI, 2 Simone APPENZELLER, 2 Jozélio Freire de CARVALHO3 1Nutritional Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo-SP, Brazil 2Rheumatology Division, Department of Medicine, Faculty of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil 3Rheumatology Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo-SP, Brazil Abstract Objectives: The aim of this study was to evaluate the prevalence of subclinical and clinical iron deficiency with iron deficiency anemia in primary antiphospholipid syndrome (PAPS). Patients and methods: The study was comprised of 29 PAPS patients and 29 healthy controls matched for age, gender, and socioeconomic status. Participants received iron, folic acid, vitamin B12, and vitamin C. A battery of tests was performed to determine the iron storage. The mean disease duration was 70±51.3 months in the patient group. Results: Iron storage depletion was observed in 10.3% of the individuals in both groups (p=0.5). Iron deficient erythropoiesis (IDE) was observed in only three PAPS patients (10.3%) (p<0.001). Iron deficiency anemia (IDA) was more common in the PAPS patients compared to controls (48.2% vs. 10.3%, respectively; p=0.009). The mean iron levels were significantly lower in the PAPS group than the controls (75.5 vs. 95.8, respectively; p=0.03). Red cell distribution width-coefficient of variation (RDW-CV) (14.9 vs. 13.2; p=0.02) and red cell distribution widthstandard deviation (RDW-SD) (46.7 vs. 40.5; p=0.009) were significantly increased in the patient group. The folic acid and vitamin C levels were lower in the PAPS group than the control group (p<0.05). Conclusion: This study showed for the first time that PAPS patients have a higher incidence of IDA and IDE compared to healthy controls. This can be attributed to inadequate ingestion of folic acid and vitamin C. Introduction Antiphospholipid syndrome (APS) is characterized by a state of hypercoagulability that can potentially result in thrombosis of all segments of the vessel system,[1-3] and various hematological pathologies, such as thrombocytopenia, autoimmune hemolytic anemia (AIHA), bone marrow necrosis (BMN), and thrombotic microangiopathy, have been connected with this syndrome.[1-3] However, the prevalence of iron deficiency anemia has never been investigated as it relates to primary antiphospholipid syndrome (PAPS). Iron deficiency is defined as a reduction in total body iron to an extent that iron stores are fully exhausted and some degree of tissue iron deficiency is present. In epidemiological studies, it has been common practice to determine the prevalence of both mild iron deficiency without anemia and more advanced irondeficiency anemia.[4] Although no increased risk of gastrointestinal (GI) malignancy has been observed in APS patients so far,[5] treatment with acetylsalicylic acid (ASA) and oral anticoagulants may increase bleeding and iron loss in patients with subclinical GI disease. The aim of this study was to determine the prevalence of subclinical and clinical iron deficiency along with iron deficiency anemia in PAPS patients. Patients and Methods The study included 29 PAPS patients (25 females, 4 males; mean age 41±12 years) who had been routinely followed up at our facility and 29 healthy controls (23 females, 6 males; mean age 37±13 years) who were matched for age, gender, and socioeconomic status. We excluded patients with APS that was associated with other rheumatic conditions, such as systemic lupus erythematosus (SLE), pregnant or breastfeeding patients, and those who had taken iron supplements during the previous year. All participants fulfilled the 1999 Sapporo and 2006 Sydney APS classification criteria.[6,7] In addition, the study was approved by the local ethics committee, and all participants gave their written consent for inclusion. Both groups were interviewed regarding their demographic characteristics (age, gender, socioeconomic status, and number of pregnancies, if female) and history of GI disease, and the subjects' nutritional aspects (ingestions of iron, folic acid, vitamin B12 and vitamin C) were assessed. The daily recommended amounts of these vitamins and minerals were based on the recommendations of the Dietary Reference Intake (DRI).[8-10] To correctly assess the nutritional intake of the study participants, the open source software program Nutwin 1.5 (Federal University of Sao Paulo, São Paulo, Brazil) was used.[11] All of the subjects were submitted to the following battery of tests to determine their iron status: serum iron (Bayer AG, Leverkusen, Germany), total iron binding capacity (TIBC) (Labtest Diagnóstica SA, Lagoa Santa-Minas Gerais, Brazil), ferritin [enzyme-linked immunosorbent assay (ELISA), Abbott Laboratories, Abbott Park, IL, USA], transferrin, indirect bilirubin, iron saturation, lactate dehydrogenase (LDH), reticulocyte count, red blood cell count, hemoglobin levels, and hematocrit levels. Additionally, the patients also underwent tests concerning the following redcell indices: (i) mean corpuscular volume, (ii) mean corpuscular hemoglobin volume, (iii) mean corpuscular hemoglobin concentration, (iv) red distribution width (Abbott Cell Dyn 3000, Abbott Laboratories, Abbott Park, IL, USA), (v) red distribution width-coefficient of variation (RDW-CV), and (vi) red distribution widthstandard deviation (RDW-SD). Iron deficiency was classified into three stages of increasing severity: (i) iron storage depletion as defined by low serum ferritin, (ii) mild iron deficiency without anemia based on laboratory evidence of iron deficient erythropoiesis (IDE), and (iii) overt iron deficiency anemia (IDA).[12] Low transferrin saturation and decreased mean corpuscular volume were used to measure the IDE.[12] In addition, all individuals were screened for occult blood loss after an adequate diet and had a fecal parasitological evaluation performed on three consecutive days. Statistical analysis The data was reported as mean ± standard deviation (SD) or percent. Variables were compared between the patients and controls using Student's t-test or a chisquare test. P values of <0.05 were considered to be significant. Results The patients and controls were statistically similar with regard to age (p=0.21) and gender (p=0.33). Primary antiphospholipid syndrome manifestations and treatment. The patients with PAPS had a mean disease duration of 70±51.3 months. Thrombotic venous events were observed in 72.4% of the patients, followed by arterial events in 55.2% and obstetric events in 44.8%. In addition, positive immunoglobulin G (IgG) anticardiolipin antibodies were observed in 48.3% of the patients, and positive lupus anticoagulant was seen in 41.4%. None of the controls had a history of thrombosis. An oral anticoagulant (warfarin) was used by 96.6% of the PAPS patients, and one patient was using low-molecular-weight heparin (LMWH) and acetylsalicylic acid (ASA). Additionally, 10 patients (34.5%) were taking prophylactic omeprazole. Iron metabolism and iron-deficiency anemia Iron storage depletion was observed in three individuals (10.3%) in both groups (p=0.5). Iron deficient erythropoiesis was seen only in three PAPS patients (10.3%) (p<0.001), and IDA was found in 14 PAPS patients (48.2%) while only three (10.3%; p=0.009) had this condition in the controls (Figure 1). Although, the hemoglobin levels were similar between the PAPS patients and controls (13.4±1.7 g/dL vs. 13.9±1.4 g/dL, respectively), microcytic changes were observed in 15 PAPS patients (51.7%) but only in one control subject (3.4%) (p=0.06). Figure 1. The prevalence of iron deficiency and anemia in the primary antiphospholipid syndrome patients and the controls. PAPS: Primary antiphospholipid syndrome; IDE: Iron deficient erythropoiesis; IDA: Iron deficiency anemia. The mean iron levels were significantly lower in the PAPS patients when compared with the healthy controls (75.5 vs. 95.8, respectively; p=0.03). Furthermore, the PAPS and healthy control groups were examined regarding the red distribution width-coefficient of variation (RDW-CV) (14.9 vs. 13.2, respectively; p=0.02) and red distribution width-standard deviation (RDW-SD) (46.7 vs. 40.5, respectively; p=0.009) were statistically higher in the PAPS patients. However, no differences were observed in the two groups related to the remaining iron metabolism variables and medications (Table 1). Table 1. A comparison of biochemical tests between the primary antiphospholipid syndrome patients and the controls Causes of iron loss Hypermenorrhea was identified in two PAPS patients (8.7%) but was not seen in the controls (p=0.07). Five PAPS patients (17.2%) and one of the control subjects (3.4%) had a prior history of GI disease, but none of the participants had a previous history of GI bleeding. All of the five PAPS patients were on prophylactic omeprazole treatment, and an occult blood test was positive for two of the five (6.9%), but all of the controls tested negative (p=0.07). Furthermore, feces parasitological tests were negative for Ancylostoma duodenale, Necator americanus, Ascaris lumbricoides, Giardia lamblia, Trichuris trichiura and Schistossoma mansoni for all of the individuals in the study. Regarding iron intake, we observed that 24 PAPS patients (82.7%) and 28 of the controls (96.5%) were getting adequate amounts of iron (p=0.08), and there was no difference seen between the patients with and without anemia. Folic acid intake was significantly lower in the PAPS group compared with the controls, and only four PAPS patients (13.8%) had adequate amounts of this mineral compared with 20 in the control group (68.9%) (p<0.001). Concerning vitamin B12, 24 PAPS patients (82.7%) and 27 controls (93.1%) had adequate amounts (p=0.2), and vitamin C intake was adequate in 10 PAPS patients (34.4%) and 24 of the controls (82.7%) (p<0.001). Moreover, the anemic PAPS patients had higher amounts of folic acid and vitamin C than those that were non-anemic (p<0.05). Discussion To our knowledge, this was the first study to demonstrate that PAPS patients have IDA and IDE compared with healthy controls. Most iron in the body circulates as hemoglobin and is recycled in red cell senescence. One gram is stored in the liver, and 0.4 g in the myoglobin and cytochromes. Additionally, small amounts (3 mg) circulate that are bound to plasma transferrin.[13] Men and nonmenstruating women lose about 1 mg of body iron per day, and menstruating women may lose an additional 1 mg daily on average.[13] Dietary iron comes from a better absorbed animal source (heme-iron) and cereal and vegetable sources (non-heme iron)[13] and is absorbed by the intestinal luminal cells through a specific transporter and released into the circulation, binding to transferrin.[13] Transferrin receptors on erythroblasts bind the iron-transferrin complexes, which then undergo endocytosis. Afterwards, the iron is incorporated into the hemoglobin.[13] Iron deficiency occurs when there are iron losses or when requirements exceed absorption, and it is often multifactorial.[13-15] Blood loss is the most important cause of iron deficiency in adults as each milliliter that is lost translates into a corresponding loss of approximately 0.5 mg of iron.[15] More specifically, GI blood loss is the most important culprit in men and postmenopausal women. While menstrual blood loss is known to lead to IDA in premenopausal women, coexistent GI lesions also frequently occur. We identified hypermenorrhea in two of the PAPS patients in our study and occult blood loss in five others in the PAPS group; however, these findings were not statistically different from the controls. In addition, both women who had hypermenorrhea also had IDE, and the two patients with occult blood loss had IDA and were sent for an endoscopy and a colonoscopy. Malabsorption of iron may be caused by intestinal mucosal disorders (most frequently coeliac disease), impaired gastric acid secretion (including the use of proton pump inhibitors), and gastric/intestinal bypass procedures.[13-15] Omeprazole was being used by 10 patients in this study, five of whom had a prior history of GI diseases, and three had IDA. We identified a significant reduction in folic acid and vitamin C intake in the PAPS patients versus the controls. In addition, anemic patients had lower amounts of folic acid and vitamin C than those who were non-anemic. Our PAPS patients and controls were matched for socioeconomic status. Although low socioeconomic status was not a risk factor for IDA in the women who had never been pregnant, it was for pregnant women due to their increased iron demands.[13] In conclusion, we believe that this is the first study to evaluate the prevalence of IDA and IDE in patients with PAPS. Although no endoscopic or colonoscopic investigations were performed to identify the source of occult blood loss, impaired iron absorption caused by omeprazole usage and lower folic acid and vitamin C intake amounts could contribute to these findings. We suggest that PAPS patients undergo a routine analysis of their hemoglobin levels, and when iron deficiency is suspected, adequate investigation should be performed. Moreover, patients should be advised about sufficient vitamin intake, especially folic acid and vitamin C. Acknowledgments The authors would like to acknowledge the help of Dr Appenzeller: Fundação Apoio À Pesquisa Estado São Paulo-Brasil (FAPESP 2008/02917-0 and 2009/06049-6), Conselho Nacional Pesquisa Desenvolvimento-Brasil CNPq (300447/2009-4) and Dr. Carvalho: Federico Foundation and CNPq (300665/2009-1). Declaration of conflicting interests The authors declared no conflicts of interest with respect to the authorship and/or publication of this article. Funding The authors received no financial support for the research and/or authorship of this article. References Uthman I, Godeau B, Taher A, Khamashta M. The hematologic manifestations of the antiphospholipid syndrome. Blood Rev 2008;22:187-94. doi: 10.1016/j. blre.2008.03.005. Khamashta MA, Bertolaccini ML, Hughes GR. Antiphospholipid (Hughes) syndrome. Autoimmunity 2004;37:309-12. Vermylen J, Carreras LO, Arnout J. Attempts to make sense of the antiphospholipid syndrome. J Thromb Haemost 2007;5:1-4. Epub 2006. Cook JD. Diagnosis and management of irondeficiency anaemia. Best Pract Res Clin Haematol 2005;18:319-32. Tincani A, Taraborelli M, Cattaneo R. Antiphospholipid antibodies and malignancies. Autoimmun Rev 2010;9:200-2. doi: 10.1016/j.autrev.2009.04.001. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295-306. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295-306. Dietary Reference Intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Agricultural Library. United States Departament of Agriculture. Food and Nutrition Information Center; 1998 Available from: http://www.nal. usda.gov/fnic/DRI//DRI_Thiamin/thiamin_full_report.pdf Dietary Reference Intakes for vitamin C, vitamin E, selenium, and carotenoids. National Agricultural Library. United States Departament of Agriculture. Food and Nutrition Information Center; 2000 Available from: http://www.nal.usda.gov/fnic/DRI/DRI_Vitamin_C/ vitamin_c_full_report.pdf Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Agricultural Library. United States Departament of Agriculture. Food and Nutrition Information Center; 2001 Available from: http://www.nal.usda.gov/fnic/DRI//DRI_ Vitamin_A/vitamin_a_full_report.pdf Nutwin – Programa de Apoio à Nutrição. Departamento de Informática em Saúde. DIS-UNIFESP/EPM. Universidade Federal de São Paulo - Versão 1.5, 2002. Cook J. The nutritional assessment of iron status. Arch Latinoam Nutr 1999;49:11S-14S. Pasricha SR, Flecknoe-Brown SC, Allen KJ, Gibson PR, McMahon LP, Olynyk JK, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Aust 2010;193:525-32. Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Physician 2007;75:671-8. Cook JD. Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol 2005;18:319-32. https://www.archivesofrheumatology.org/full-text/509.
  8. An Increased Risk of Dementia Possible in Lupus Stephanie Pappas Jul 13, 2016 Neuropsychiatric symptoms have long been known to affect some patients with systemic lupus erythematosus. But now, emerging evidence suggests that lupus patients may be at increased risk of dementia, as well. A retrospective study published in April in the journal Arthritis Care and Research used the Taiwan Longitudinal Health Insurance Database 2005, a random sampling of the 99.9 percent of Taiwanese citizens covered by the country's national health insurance, to compare dementia rates in people with systemic lupus erythematosus to age- and sex-matched patients without the autoimmune disease. The analysis revealed a doubled rate of dementia in SLE patients. There were 357 cases per 100,00 person-years in the lupus cohort, compared with 180 cases per 100,000 person-years in the non-SLE cohort. {Crude hazard ratio 1.92, 95 percent CI, 1.14−3.23, P< 0.001.) Dementia is a condition of gradual decline, while neuropsychiatric SLE usually manifests early in the diagnosis, wrote study author Dr. Yu-Ru Lin of Taipei Medical Hospital and colleagues. Antiphospholipid antibodies might put patients at risk of micro-stroke, they hypothesized. Alternatively, anatomical changes in the brain attributable to the disease or corticosteroid treatments may contribute to cognitive decline. Rheumatology Network spoke with Dr. Yehuda Shoenfeld, an autoimmunity researcher at Tel Aviv University in Israel, for a deeper look at the dementia-lupus connection. Though not involved with the Taiwanese study, Dr. Shoenfeld has conducted research on lupus autoantibodies and has written about neuropsychiatric lupus in the clinic. He provided his perspective on the need to better understand how lupus might affect the brain. RN: Obviously, neurologic symptoms are well-known in systemic lupus erythematosus. What is the difference between central nervous system lupus and dementia? Shoenfeld: There are neurological, physical findings and also X-ray findings in which you see defects in neurological functions, mainly nerves which can be motor or sensory or so forth. It can be represented by conversions. It can be represented by paralysis. It can be presented as paresthesia, which means it feels like ants are going on your body. So it's more in the domain of physical examination. Dementia is more that you lose your capacity for cognition, memory or so forth. You cannot detect it by X-rays, but you can detect it by talking to the patient and listening to him and you can see that he's not finding himself, I would say, in space. So this is a big difference. What is new about this study by Lin and colleagues? So far we knew that CNS lupus is quite common, 20 percent of the patients can suffer from that. There are many manifestations of CNS lupus from paralysis to conversion, from deafness to blindness, from paresthesia to pains and so forth. Dementia up until now was not part of the story of lupus - neither in regular lupus nor in CNS lupus. We did have psychotic attack in CNS lupus, which could be completely resolved upon proper therapy, for instance with corticosteroids or immunosuppressive drugs. Suddenly, there is dementia. Now, I want to remind you that lupus is a disease of young females, so it's not elderly females with dementia at this age. So the people who published the paper came with the idea that in those patients with CNS lupus, you can find, eventually, more dementia, which is a new revelation, not known so far. With my colleague, Professor Howard Amital [of Sheba Medical Center], an expert on Big Data — we asked the computer to cross the word dementia with SLE in a health database, but we did something else in this respect. We compared it to two other autoimmune diseases. I have to say that, to my great surprise, we have found also that patients with SLE have a threefold increase in dementia. We were not able so far to segregate it to the different factor that we would like to, but we found also with rheumatoid, there was an increase. There was no increase, for instance, in Behcet's syndrome. So most probably, these results are correct, and they should raise a red light. We will analyze our results and we will publish it very soon. But I think it's interesting, even though I had not believed this when I had received the paper from you. What kind of mechanisms might explain why there could be this link? When you have an organic damage to the brain, being autoimmune in nature, being the position of autoantibodies, being the position of other factors it causes chronic damage to the brain and eventually, there is some kind expression that above this threshold it can cause the psychological defects which are expressed as dementia. It's like accumulating damage. Given what is known right now, what is the message for practicing rheumatologists? Before we do anything with patients, we should confirm the results and indeed analyze what could be the mechanism and then eventually work on this to see how we could prevent this. Maybe, for instance, a very quick recovery should be installed whenever there are any signs of CNS lupus. We have to see if, indeed, it's limited only to patients with CNS lupus. There is a lot to analyze now, to learn, to study and to draw conclusions for the future. References: Lin Y-R, Chou L-C, Chen H-C, Liou T-H, Huang S-W, Lin H-W. "Increased risk of dementia in patients with systemic lupus erythematosus: A nationwide population-based cohort study." Arthritis Care & Research. 2016. doi:10.1002/acr.22914. Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. "Neuropsychiatric lupus: a mosaic of clinical presentations." BMC Medicine BMC Med. 2015;13(1):43. doi:10.1186/s12916-015-0269-8. https://www.rheumatologynetwork.com/lupus/increased-risk-dementia-possible-lupus
  9. Stem Cells Have Promise for SLE Treatment Across Ethnicities, Proof-of-concept Study Shows FEBRUARY 6, 2019 BY MARISA WEXLER IN NEWS. Click Here to receive Lupus News via e-mail A new proof-of-concept study supports the use of mesenchymal stem cells (MSCs) to treat systemic lupus erythematosus (SLE), showing that transplanting MSCs can control the disease in patients from different ethnicities. The study, “Therapeutic potential of allogeneic mesenchymal stromal cells transplantation for lupus nephritis,” was published in Lupus. MSCs are cells that are able to differentiate (transform) into certain other types of cells, including bone, muscle, and fat cells. These cells are thought to have potential as treatments for SLE because they can reduce bone loss and inflammation in mouse models. However, there is limited data about how well MSC therapy works in humans. There have been a few studies with promising results, but these have come almost entirely from centers in China, meaning the patients are share the same ethnic background. In this proof-of-concept study, MSC therapy was used for three patients in Spain. Two of the patients were male Spanish Caucasians; the third was a Bolivian female of indigenous descent. All patients had been diagnosed with SLE for more than a decade and, at the time of treatment, had flare-ups that were not being well-controlled with standard therapies. MSCs were taken from the bone marrows of healthy donors, purified, expanded, and then infused into patients intravenously at a dose of 1.5 million cells per kilogram of body weight — an average of 90 million cells per patient. The patients were followed for nine months. Researchers assessed markers of inflammation and immune activity, as well as markers of kidney function like the amount of protein in their urine. Kidneys are often targets of the body’s autoimmune attack in SLE, and damage to them can be a serious issue in this disease. The researchers also measured disease severity using the SLE Disease Activity Index 2000. All three patients responded to treatment with MSCs. Two had complete responses, with decreased inflammatory markers, signs of better kidney function, and lower disease score that were sustained over the entire nine-month follow-up period. The third was only deemed a partial response, but was still an improvement, and dosages of other medications could be reduced by 50% to 90% for all the patients. The researchers reported there were no adverse side effects or safety problems associated with the patients receiving the MSC therapy. There also was no evidence that the MSCs were being rejected by the body, which can be a concern for these types of therapies. “Our results confirm the successful results of MSC treatments in SLE patients performed in different ethnic groups and locations,” the researchers concluded in their paper, also noting that the findings support the prompt implementation of a Phase 2 clinical trial testing the approach in a larger group of patients. The trial (2017-000391-28), already approved by the Spanish Medicines Agency, will include 36 patients with lupus nephritis (a common kidney inflammation in SLE patients) and randomly assign them an infusion with MSCs or a placebo. The trial’s main objective is to determine if more patients respond to MSCs. Secondary measures include the time to response, duration of response, safety, and reductions in use of corticosteroids and immunosuppressants. https://lupusnewstoday.com/2019/02/06/study-stem-cells-promise-sle-treatment-across-ethnicities/?utm_source=LUP+NEws+E-mail+List&amp;utm_campaign=1e70fc3e85-RSS_WEEKLY_EMAIL_CAMPAIGN_US&amp;utm_medium=email&amp;utm_term=0_50dac6e56f-1e70fc3e85-71887989
  10. SLE Patients at Higher Risk for Some Blood Cancers, Study Says FEBRUARY 18, 2019 BY JOANA CARVALHO IN NEWS. Click Here to receive Lupus News via e-mail Systemic lupus erythematosus (SLE) patients have a higher risk for certain cancers — including cervical, thyroid, ovarian, and oral cancer, as well as lymphoma, multiple myeloma, and leukemia — than the general population, emphasizing the importance of cancer screening programs as part of SLE management. The findings of the study, “Systemic lupus erythematosus is a risk factor for cancer: a nationwide population-based study in Korea,” were published in Lupus. SLE, the most prevalent form of lupus, is a chronic autoimmune disease characterized by behavioral and psychological symptoms including pain, fatigue, depression, and impaired cognition. Previous studies have suggested that SLE patients are more likely to be affected by certain types of cancers, including non-Hodgkin’s lymphoma, lung, liver, and vaginal cancer. “However, some studies have found a decreased risk of some hormone-sensitive cancers, such as breast, ovarian, and endometrial cancer, in SLE patients. However, whether patients with SLE have increased or decreased risk of breast cancer remains unclear,” the researchers said. In this study, investigators set out to characterize the relationship between SLE and cancer in the entire Korean population. The nationwide, retrospective, cohort study involved 21,016 SLE patients and 105,080 age- and sex-matched controls without SLE. The cohort was selected from the Korean National Health Insurance Service (NHIS) database between 2008 and 2014. Over a follow-up period of seven years, 763 (3.36%) SLE patients and 2,667 (2.54%) controls developed cancer. The incidence risk of cancer was higher in SLE patients compared to controls (6.427 vs 4.466). Incidence risk refers to the chance of a disease happening over a defined period of time. After accounting for age and sex, SLE patients showed a 44% higher risk of developing cancer. No differences in cancer risk were found between female and male SLE patients. SLE patients at higher risk for cancer were younger (under 40) and male, being 12 and 29 times more likely of developing lymphoma than control subjects. Looking at different cancer types, researchers found that SLE patients were more likely to develop cervical, thryoid, ovarian, and oral cancer, as well as lymphoma, leukemia, and multiple myeloma than controls. On the other hand, no significant differences in the risk of stomach, colorectal, liver, pancreatic, lung, breast, prostate, biliary, laryngeal, renal, bladder, nerve, and skin cancer were found between SLE patients and controls. While the mechanisms leading to increased risk of cancer in SLE patients are yet to be fully understood, the findings highlight the need for cancer screening programs among this patient population. “In conclusion, SLE is an independent risk factor for malignancy, especially cervical, thyroid, ovarian, oral … as well as lymphoma, multiple myeloma, and leukemia. The importance of cancer screening programs should be emphasized in SLE patients,” the scientists concluded. https://lupusnewstoday.com/2019/02/18/sle-patients-may-be-at-higher-risk-of-developing-certain-types-of-cancer/?utm_source=LUP+NEws+E-mail+List&amp;utm_campaign=1e70fc3e85-RSS_WEEKLY_EMAIL_CAMPAIGN_US&amp;utm_medium=email&amp;utm_term=0_50dac6e56f-1e70fc3e85-71887989
  11. Congratulations and Many Thanks to Lady Gaga! To the entire world, Lady Gaga is a winner. But to the lupus community she’s a hero. Last night at the 2019 Grammy’s, she won an award for Best Pop Solo in honor of her aunt Joanne who lost her battle with lupus at 19. Afterwards she tweeted: Lady Gaga has shared the song’s significance on social media. “I have carried a deep grief in my heart over my family’s tragedy. The loss of Joanne affected my father so deeply that it affected me. When he cried, I cried. When he was angry, I was angry. When he was hurt, I hurt. Today I transform this grief to hope and healing. After 10 years with you I still get nervous before the Grammys, but I know I have an angel with me.” Hear about lupus research from Lady Gaga's dad And watch this video to hear directly from Lady Gaga’s dad, Joe Germanotta, about why he has honoured his sister by actively supporting the Lupus Research Alliance. As a member of our Board of Directors, Joe believes that the research funded by the Lupus Research Alliance is where hope begins. Where our funded research discoveries are breaking through to deliver better treatments and a cure!
  12. Lupus: 3 Things to Know Mark L. Fuerst Dec 3, 2018 Lupus Three new studies in systemic lupus erythematosus (SLE) reveal that a gut bacterium may be linked to autoimmune diseases, including SLE; pregnancy complications in women with lupus have decreased over the past 2 decades; and physical or emotional abuse in childhood raises the risk of lupus.1-3Scroll through the slides for the latest findings and their clinical implications. http://www.rheumatologynetwork.com/lupus/lupus-3-things-know
  13. lupusnewstoday.com/2019/01/18/rubella-immunity-lowers-vaccinated-lupus-adolescents/ Jose Marques Lopes, PhDJanuary 18, 2019 Vaccinated patients with highly active systemic lupus erythematosus seem to lose their immunity levels over time, a study in rubella-vaccinated adolescents suggests. The study, “Risk factors associated with accelerated rubella-IgG antibody loss in previously vaccinated, treatment-naïve juvenile Systemic Lupus Erythematosus patients: a prospective study,” was published in the journal Arthritis & Rheumatology. Patients with SLE are at risk for infections, including those that are preventable by vaccines, due to the alterations in their immune system and the immunosuppressive treatments they receive. SLE particularly affects women of childbearing age. Rubella infection during pregnancy is associated with severe neonatal complications, including miscarriage, congenital rubella syndrome, and neonatal death. As a result, knowing the immune status against rubella in at-risk SLE patients is important. Researchers from the National and Kapodistrian University of Athens in Greece looked to address this, focusing their study on previously vaccinated adolescents with juvenile SLE (jSLE). They also wanted to find potential factors affecting antibody levels. In total, the study included 21 newly diagnosed girls with jSLE, with a mean age of 11.6 years. All of them had had two doses of the live attenuated MMR — measles, mumps, and rubella — vaccine in early childhood. No patients had underlying immunodeficiency, a blood transfusion within the previous six months, or prior treatment with immunomodulatory therapies. Seroprotection — a positive, protective response to vaccination — and levels of rubella antibodies were determined at enrollment and at one and three years after treatment. Results revealed that while patients remained protected from rubella infection at all times, the amount of antibodies against the virus significantly decreased over time, from 39.1 IU/ml at diagnosis to 29.9 IU/mL at one year and 26.2 IU/mL at three years. No patients showed low total antibody levels or renal insufficiency. High SLE disease activity — assessed with the SLE disease activity index, or SLEDAI — and low levels of the complement protein C4 — a common SLE marker — were associated with lower rubella antibody concentrations at diagnosis and at 12 months. Findings further revealed that skin involvement and persistent lymphopenia and leukopenia — having abnormally low blood levels of lymphocytes or leukocytes (white blood cells), respectively — at one year directly correlated to lower rubella antibody concentrations. “In conclusion, high disease activity strongly correlated with accelerated antibody loss,” the investigators wrote, adding that lower antibody levels may be due to SLE, its activity, or medications. They also noted that although more studies are needed to assess long-term immunity induced by vaccinations in children with autoimmune diseases, “close monitoring of the immunization status against vaccine-preventable diseases in this group of patients is advised.” The team cautioned that the small number of patients precluded finding differences among the different treatment groups.
  14. Dietary Supplements and Homeopathy Are Not Tested for Safety and Effectiveness Posted by Kathleen Hoffman on Dec 17, 2018 in Blog | 0 comments On October 30, 2018, the FDA sent a letter to the American Botanical Pharmacy and “Dr.” Richard Schulze – whose “doctorate is in herbology”- stating, Yet on December 8, 2018, the website still had this question and answer posted. Type I diabetes is an autoimmune condition in which the body destroys the beta cells of the pancreas that produce insulin. Lifestyle changes and using supplements will not cure Type I diabetes. Although the company removed items from the FDA’s detailed list of violations, they still missed this and several other claims of cures with the use of their dietary supplement products. Use of Supplements and Homeopathy More than half of the US adult population consume dietary supplements. The dietary supplement industry today is a $35.9 billion a year market and is estimated to grow by 20 billion dollars in the next six years.3 Around six million people in the US use homeopathy, one million of them are children. Unfortunately, many people do not realize that these products are regulated as food. The Dietary Supplement Health and Education Act, passed in 1994, allows these products to be sold without testing for safety or effectiveness and without information on adverse effects or packaging that is child-resistant.4 Distrust of the pharmaceutical industry and an interest in taking control of one’s health are just a couple of the reasons people choose dietary supplements and homeopathy. Unfortunately, dietary supplements and homeopathy are being actively promoted on the Internet in lieu of regulated, mainstream treatments. Many of these supplements have serious drawbacks. Recent research found that 746 dietary supplement brands from between 2007 and 2016 contained active pharmaceutical drugs, like steroids.5 Teething tablets by Hyland’s Homeopathic were recently discovered to contained belladonna nightshade, a poisonous plant. Linked to deaths of babies last year, the FDA warned consumers not to use these products.6 Hepatotoxicity is a principle safety issue for as many as 60 herbal supplements. Green tea contains ECGC, an antioxidant that is toxic for liver cells. Green tea based herbal supplements containing other ingredients have been implicated in liver damage requiring liver transplant.7 It shouldn’t be surprising to learn that a 2015 study of emergency room visits in the US estimated that over 23,000 emergency department visits per year can be attributed to adverse events caused by dietary supplements. These visits resulted in an estimated 2,154 hospitalizations.8 It’s important to be careful and wary of what is advertised as supplements. Remembering that the FDA does not test these products for safety or effectiveness before they are sold to you. It is only when a problem arises and the FDA is notified, that warnings and recalls occur. Check out Meat Packers and Patent Medicines: Welcome to Life before the FDA References 1 https://www.fda.gov/ICECI/EnforcementActions/WarningLetters/ucm627164.htm 2 https://www.herbdoc.com/blog/is-diabetes-curablec.oup.com/jnci/article/110/1/121/4064136 3 https://www.statista.com/statistics/828481/total-dietary-supplements-market-size-in-the-us/ 4 https://ods.od.nih.gov/About/DSHEA_Wording.aspx 5 doi:10.1001/jamanetworkopen.2018.3337 6 https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm230762.htm 7 DOI: https://doi.org/10.1016/j.jpeds.2018.05.022 8 DOI: 10.1056/NEJMsa1504267 https://medivizor.com/blog/2018/12/17/dietary-supplements-and-homeopathy/?utm_campaign=website&amp;utm_source=sendgrid.com&amp;utm_medium=email
  15. Cannabinoids for RA: What Rheumatologists Need to Know Linda Peckel Nov 12, 2018 Studies indicate the benefits of treatment with cannabinoids for rheumatic diseases in general.1-3 In rheumatoid arthritis (RA), the target of cannabinoid therapy has been pain reduction. Clinical data do not currently support an indication for reduction of disease severity, although new studies continue to explore this potential. References: 1. Katz-Talmor D, Katz I, Porat-Katz BS, Shoenfeld Y. Cannabinoids for the treatment of rheumatic diseases - where do we stand? Nat Rev Rheumatol. 2018 Jun 8. doi: 10.1038/s41584-018-0025-5. [Epub ahead of print] 2. Gui H, Tong Q, Qu W, Mao CM, Dai SM. The endocannabinoid system and its therapeutic implications in rheumatoid arthritis. Int Immunopharmacol. 2015;26:86-91. 3. Richards BL, Whittle SL, Buchbinder R. Neuromodulators for pain management in rheumatoid arthritis (review). Cochrane Database Syst Rev. 2012;1:CD008921. http://www.rheumatologynetwork.com/arthritis/cannabinoids-ra-what-rheumatologists-need-know?rememberme=1&amp;elq_mid=4976&amp;elq_cid=1830808
  16. Admin


    Your GDPR questions answered Individual Rights The right to be informed Invision Community has a built in privacy policy system that is presented to a new user, and existing users when it has been updated. What should your privacy policy contain? I personally like the look of SEQ Legal's framework which is available for free. This policy covers the important points such as which cookies are collected, how personal information is used and so on. There may be other services out there offering similar templates. Right to erasure I personally feel that everyone should listen to "A Little Respect" as it's not only a cracking tune, but also carries a wonderful message. The GDPR document however relates to the individuals right to be forgotten. Invision Community allows you to delete members. When deleting members, you can elect to remove their content too. There is an option to keep it as Guest content, thus removing the author as identifiable. It's worth using the 'keep' option after researching the user's posts to make sure they haven't posted personal information such as where they live, etc. Emailing and Consent Invision Community has the correct opt-in for bulk emails on registration that is not pre-checked. If the user checks this option, this is recorded with the member's history. Likewise, if they retract this permission, that action is also recorded. When you edit the terms and conditions or privacy policy, all users are required to read it again and opt-in again. Cookies A lot of GDPR anxiety seems to revolve around these tiny little text files your browser stores. If you read the GDPR document (and who doesn't love a little light reading) then you'll see that very little has actually changed with cookies. It extends current data protection guidance a little to ensure that you are transparent about which cookies you store. Invision Community has tools to create a floating cookie opt-in bar, and also a page showing which cookies are stored and why. This is the page that you'd edit to add any cookies your installation sets (if you have enabled Facebook's Pixel, or Google Analytics for example). Your GDPR Questions Now let's look at some questions that have been asked on our community and I'll do my best to provide some guidance that should help you make decisions on how to configure your Invision Community to suit your needs. Alan!! Is the soft opt-in cookie policy enough? What about the IP address stored in the session cookie? Great question. There's conflicting advise out there about this. The GDPR document states: The ICO states that session cookies stored for that session only (so they are deleted when the tab / window is closed) are OK as long as they are not used to profile users. This is re-enforced by EUROPA: My feeling is that GDPR isn't really out to stop you creating a functioning website, they are more interested in how you store and use this information. Thus, I feel that storing a session cookie with an IP address is OK. The user is told what is being stored and instructions are given if they want to delete them. Given the internet is very much driven by IP addresses, I fail to see how you can not collect an IP address in some form or another. They are collected in access logs deep in the server OS. Finally, there is a strong legitimate interest in creating a session cookie. It's part and parcel of the website's function and the cookie is not used in any 'bad' way. It just allows guests and members to retain preferences and update "last seen" times to help deliver content. Do I need to delete all the posts by a member if they ask me to? We have many large clients in the EU with really impressive and expensive legal teams and they are all unanimous in telling us that there is no requirement to delete content when deleting a user's personal information. The analogy often given is with email: once someone sends you an email you are not obligated to delete that. The same is true with content posted by a user: once they post that content it's no longer "owned" by them and is now out in public. Ultimately, the decision is yours but do not feel that you have to delete their content. This is not a GDPR requirement. What about members who haven't validated? They're technically not members but we're still holding their data! No problem. The system does delete un-validated users and incomplete users automatically for you. You can even set the time delay for deletion in the ACP. What about RECAPTCHA? I use this, and it technically collects some data! Just add that you use this service to your privacy policy, like so: I see many companies emailing out asking for members to opt back in for bulk mail, do I need to do this? Short answer: No. Since Invision Community 4.0, you can only ever bulk email users that have opted in for bulk emails. There's no way around it, so there's nothing to ask them to opt-in for. They've already done it. There is a tiny wrinkle in that pre 4.2.7, the opt-in was pre-checked as was the norm for most websites. Moving forward, GDPR asks for explicit consent, so this checkbox cannot be pre-ticked (and isn't in Invision Community 4.2.7 and later). However, the ICO is clear that if the email list has a legitimate interest, and was obtained with soft opt-in, then you don't need to ask again for permission. What about notifications? They send emails! Yes they do, but that's OK. A notification is only ever sent after a user chooses to follow an item. This falls under legitimate interest. There is also a clear way to stop receiving emails. The user can opt-in and opt-out of email as a notification device at their leisure. Do I need to stop blocking embeds and external images? No. The internet is based on cross-linking of things and sharing information. At a very fundamental level, it's going to be incredibly hard to prevent it from happening. Removing these engaging and enriching tools are only going to make your community suffer. There's no harm in adding a few lines in your privacy policy explaining that the site may feature videos from Vimeo and Youtube as part of user contributions but you do not need to be worried. As stated earlier, GDPR isn't about sucking the fun out of the internet, it's about being responsible and transparent. Phew. Hopefully you've got a better understanding about how Invision Community can assist your GDPR compliance efforts. The best bit of advice is to not panic. If you have any questions, we'd love to hear them. Drop us a line below. Edited May 12 by Matt GDPR updates for Invision Community 4.3.3 Unless you've been living under a rock, or forgot to opt-in to the memo, GDPR is just around the corner. Last week we wrote a blog answering your questions on becoming GDPR compliant with Invision Community. We took away a few good points from that discussion and have the following updates coming up for Invision Community 4.3.3 due early next week. Downloading Personal Data Invision Community already has a method of downloading member data via the member export feature that produces a CSV. However, we wanted Invision Community to be more helpful, so we've added a feature that downloads personal data (such as name, email address, known IP addresses, known devices, opt in details and customer data from Nexus if you're using that) in a handy XML format which is very portable and machine readable. You can access this feature via the ACP member view The download itself is in a standard XML format. A sample export Pruning IP Addresses While there is much debate about whether IP addresses are personal information or not, a good number of our customers requested a way to remove IP addresses from older content. There are legitimate reasons to store IP addresses for purchase transactions (so fraud can be detected), for security logs (to prevent hackers gaining access) and to prevent spammers registering. However, under the bullet point of not storing information for longer than is required, we have added this feature to remove IP addresses from posted content (reviews, comments, posts, personal messages, etc) after a threshold. The default is 'Never', so don't worry. Post upgrade you won't see IP addresses removed unless you enter a value. This new setting is under Posting Deleting Members Invision Community has always had a way to delete a member and retain their content under a "Guest" name. We've cleaned this up in 4.3.3. When you delete a member, but want to retain their content, you are offered an option to anonymise this. Choosing this option attributes all posted content to 'Guest' and removes any stored IP addresses. Deleting a member Privacy Policy We've added a neat little feature to automatically list third parties you use on your privacy policy. If you enable Google Analytics, or Facebook Pixel, etc, these are added for you. The new setting Finding Settings Easily To make life a little easier, we've added "GDPR" as a live search keyword for the ACP. Simply tap that into the large search bar and Invision Community will list the relevant settings you may want to change. These changes show our ongoing commitment to helping you with your GDPR compliance. We'll be watching how GDPR in practise unfolds next month and will continue to adapt where required.
  1. Load more activity
  • Create New...